Skip to main content

Recent Advancements in Municipal Wastewater as Source of Biofuels from Algae

  • Chapter
  • First Online:
Basic Research Advancement for Algal Biofuels Production

Part of the book series: Clean Energy Production Technologies ((CEPT))

Abstract

The normal aquatic microflora comprising of bacteria and algae perform a vital role in the maintenance of an ecological balance of water by consuming excess nutrients. Exploring wastewater as a reservoir for nutrients and concomitant generation of value-added products from algae and bacteria is indeed an innovative approach towards sustainability. For the optimum exploitation of current wastewater treatment infrastructure, eutrophic water bodies like lakes, ponds, and water canals can be used for the growth of bacteria and algae, thereby resolving the scalability and economic issues. In this chapter we are elaborating the municipal wastewater remediation potential of bacteria and algae and valorizing the resulting biomass for diverse applications. The microbial enrichment in wastewater can be envisaged as a rapid, economical, and environment-friendly approach for the wastewater remediation coupled with the generation of bioactive compounds. The crucial challenges include the standardization of the culture conditions to grow bacteria and algae in wastewater for nutrient elimination concomitant with the generation of biofuels and valuable products. The biorefinery approach is an efficient tool to combat environmental pollution coupled with the generation of value-added products like biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelaziz AE, Leite GB, Hallenbeck PC (2013) Addressing the challenges for sustainable production of algal biofuels: I. algal strains and nutrient supply. Environ Technol 34(13–14):1783–1805

    Article  CAS  Google Scholar 

  • Abengoa (2020) Energy recovery from Waste and Biomass. Retrieved April 7, 2021, from https://www.abengoa.com/web/en/negocio/energia/residuos/

  • Abinandan S, Shanthakumar S (2015) Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: a review. Renew Sust Energ Rev 52:123–132

    Article  CAS  Google Scholar 

  • Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21(5):569–574

    Article  CAS  Google Scholar 

  • Akhtar MU, Ali Khan A, Jahangir Khan W, Furqan T (2019) Microalgae as sources of biofuel production through wastewater treatment. Novel Res Microbiol J 3(5):464–470

    Article  Google Scholar 

  • Al-Ghouti MA, Al-Kaabi MA, Ashfaq MY, Da’na, D. A. (2019) Produced water characteristics, treatment and reuse: a review. J Water Proc Eng 28:222–239

    Article  Google Scholar 

  • Ammar SH, Khadim HJ, Mohamed AI (2018) Cultivation of Nannochloropsis oculata and Isochrysis galbana microalgae in produced water for bioremediation and biomass production. Environ Technol Innov 10:132–142

    Article  Google Scholar 

  • Badrinarayanan I, Sharieff J, Johannes T, Crunkleton DW (2017) Using produced water to grow microalgae. Russell School of Chemical Engineering the University of Tulsa, Tulsa, OK, p 20

    Google Scholar 

  • Barros AI, Gonçalves AL, Simões M, Pires JC (2015) Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev 41:1489–1500

    Article  Google Scholar 

  • Benemann JR (2008) Opportunities and challenges in algae biofuels production. Algae World, pp 1–15

    Google Scholar 

  • Bird KT, Chynoweth DP, Jerger DE (1990) Effects of marine algal proximate composition on methane yields. J Appl Phycol 2(3):207–213

    Article  Google Scholar 

  • Bp plc (2020) Statistical Review of World Energy- all data 1965–2019. Retrieved April 7, 2021, from bp database

    Google Scholar 

  • Carlsson AS, Van Beilen JB, Möller R, Clayton D (2007) Micro-and macro-algae: utility for industrial applications. Outputs from the EPOBIO project, 82

    Google Scholar 

  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Claxton R, Das KC (2010a) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol 101(17):6751–6760

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010b) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101(14):5330–5336

    Article  CAS  Google Scholar 

  • Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy 5(1):95–111

    Article  CAS  Google Scholar 

  • Clarens AF, Nassau H, Resurreccion EP, White MA, Colosi LM (2011) Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environ Sci Technol 45(17):7554–7560

    Article  CAS  Google Scholar 

  • Das P, AbdulQuadir M, Thaher M, Khan S, Chaudhary AK, Alghasal G, Al-Jabri HMS (2019) Microalgal bioremediation of petroleum-derived low salinity and low pH produced water. J Appl Phycol 31(1):435–444

    Article  CAS  Google Scholar 

  • Demirbas A (2009) Biofuels securing the planet’s future energy needs. Energy Convers Manag 50(9):2239–2249

    Article  CAS  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51(12):2738–2749

    Article  CAS  Google Scholar 

  • Dos Santos EM, Teixeira C, Ferreira DC (1999) Competitive strategies and strategic positioning of oil companies in the international oil business: theory and practice in perspective. Rev Energ:245–248

    Google Scholar 

  • Eshaq FS, Ali MN, Mohd MK (2011) Production of bioethanol from next generation feed-stock alga Spirogyra species. Int J Eng Sci Technol 3(2):1749–1755

    Google Scholar 

  • Folea I, Nurul HM, Ajayi TS (2010) Competition and marketing on the Swedish biofuel markets. School of Management Blekinge Institute of Technology, pp 1–103

    Google Scholar 

  • Giampietro M, Ulgiati S, Pimentel D (1997) Feasibility of large-scale biofuel production. Bioscience 47(9):587–600. https://doi.org/10.2307/1313165

    Article  Google Scholar 

  • Godfrey V (2012) Production of biodiesel from oleaginous organisms using underutilized wastewaters. Utah State University, pp 1–153

    Google Scholar 

  • Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507

    Article  CAS  Google Scholar 

  • Gulab S, Patidar SK (2018) Microalgae harvesting techniques: a review. J Environ Manag 217:499–508

    Article  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46(1):304–309

    Article  CAS  Google Scholar 

  • Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88(10):3464–3467

    Article  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103(30):11206–11210

    Article  CAS  Google Scholar 

  • Hopkins TC, Graham EJS, Schwilling J, Ingram S, Gómez SM, Schuler AJ (2019) Effects of salinity and nitrogen source on growth and lipid production for a wild algal polyculture in produced water media. Algal Res 38:101406

    Article  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  Google Scholar 

  • Hwang JH, Kabra AN, Ji MK, Choi J, El-Dalatony MM, Jeon BH (2016) Enhancement of continuous fermentative bioethanol production using combined treatment of mixed microalgal biomass. Algal Res 17:14–20

    Article  Google Scholar 

  • IEA Report (1994) Carbon-di-oxide utilization: evaluation of specific biological processes which have the capability of directly utilizing high concentration of carbon-di-oxide as found in the flue gas streams from power generation plant. Chemical society of Japan Publishers

    Google Scholar 

  • Indian Brand Equity Foundation (2017) Renewable energy. Retrieved April 20, 2021, from https://www.ibef.org/archives/industry/Renewable-energy-reports/indian-Renewable-energy-industry-analysis-november-2017

  • Jones RO, Mead WJ, Sorensen PE (1978) Free entry into crude oil and gas production and competition in the US oil industry. Nat Resour J 18(4):859–875

    Google Scholar 

  • Kadlec RH, Wallace SD (2009) Treatment wetlands, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kesaano M, Sims RC (2014) Algal biofilm based technology for wastewater treatment. Algal Res 5:231–240

    Article  Google Scholar 

  • Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H, Ghosh PK (2012) Kappaphycus alvarezii as a source of bioethanol. Bioresour Technol 103(1):180–185

    Article  CAS  Google Scholar 

  • Khan SA, Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 13(9):2361–2372

    Article  CAS  Google Scholar 

  • Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160(1):9–18

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C, Saxena AK (2019) Technologies for biofuel production: current development, challenges, and future prospects. In: Prospects of renewable bioprocessing in future energy systems. Springer, Cham, pp 1–50

    Google Scholar 

  • Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH (2015a) Microalgae–A promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  Google Scholar 

  • Kumar K, Mishra SK, Shrivastav A, Park MS, Yang JW (2015b) Recent trends in the mass cultivation of algae in raceway ponds. Renew Sust Energ Rev 51:875–885

    Article  CAS  Google Scholar 

  • Kumarappan S, Joshi S, MacLean HL (2009) Biomass supply for biofuel production: estimates for the United States and Canada. Bioresources 4(3):1072–1073

    Google Scholar 

  • Li R, Chen GZ, Tam NFY, Luan TG, Shin PK, Cheung SG, Liu Y (2009) Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicol Environ Saf 72(2):321–328

    Article  CAS  Google Scholar 

  • Mendes LBB, Cunha PCR, D’oca MGM, Abreu PC, Primel EG (2011) US Patent No 7,955,505. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Mobin S, Alam F (2014) Biofuel production from algae utilizing wastewater. In: 19th Australasian fluid mechanics conference, Melbourne, VIC

    Google Scholar 

  • Morand P (1991) Bioconversion of seaweeds. In: Seaweed resources in Europe: uses and potential, pp 95–148

    Google Scholar 

  • My Eco Energy (2021) A giant leap to Sustainable future. Retrieved April 8, 2021, from https://myecoenergy.com/

  • OECD-FAO Agricultural Outlook (2016) Retrieved April 20, 2021, from http://www.fao.org/3/BO103e/BO103e.pdf

  • Órpez R, Martínez ME, Hodaifa G, El Yousfi F, Jbari N, Sánchez S (2009) Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination 246(1–3):625–630

    Article  Google Scholar 

  • Osborne S (2007) Energy in 2020: assessing the economic effects of Commercialization of cellulosic ethanol. U.S. Department of Commerce, pp 1–20

    Google Scholar 

  • Park JH, Yoon JJ, Park HD, Kim YJ, Lim DJ, Kim SH (2011) Feasibility of biohydrogen production from Gelidium amansii. Int J Hydrog Energy 36(21):13997–14003

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  Google Scholar 

  • POET, LLC (2021a) About. Retrieved April 7, 2021, from https://poet.com/about

  • POET, LLC (2021b) Product+Innovation. Retrieved April 7, 2021, from https://poet.com/products

  • Pokrivčák J, Rajčaniová M (2011) Crude oil price variability and its impact on ethanol prices. Agric Econ 57(8):396–397

    Google Scholar 

  • Precedence Research (2021) Global industry analysis. Retrieved April 20, 2021, from https://www.precedenceresearch.com/biofuels-market

  • Pruvost J, Cornet JF, Pilon L (2016) Large-scale production of algal biomass: photobioreactors. In: Algae biotechnology. Springer, Cham, pp 41–66

    Chapter  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  CAS  Google Scholar 

  • Rajagopal D, Sexton SE, Roland-Holst D, Zilberman D (2007) Challenge of biofuel: filling the tank without emptying the stomach? Environ Res Lett 2(4):044004

    Article  Google Scholar 

  • Ramos JL, Valdivia M, García-Lorente F, Segura A (2016) Benefits and perspectives on the use of biofuels. Microb Biotechnol 9(4):436–440

    Article  Google Scholar 

  • Ranjbar S, Quaranta JD, Tehrani R, Van Aken B (2015) Algae-based treatment of hydraulic fracturing produced water: metal removal and biodiesel production by the halophilic microalgae Dunaliella salina. In: bioremediation and sustainable environmental technologies. In: Proceedings of the third international symposium on bioremediation and sustainable environmental technologies, Miami, FL, pp 18–21

    Google Scholar 

  • Renewable Energy Group (2020) Analyst and investor day. Retrieved April 7, 2021, from https://investor.regi.com/

  • Richards RG, Mullins BJ (2013) Using microalgae for combined lipid production and heavy metal removal from leachate. Ecol Model 249:59–67

    Article  CAS  Google Scholar 

  • Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100(2):203–212

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  • Rosso D, Larson LE, Stenstrom MK (2008) Aeration of large-scale municipal wastewater treatment plants: state of the art. Water Sci Technol 57(7):973–978

    Article  Google Scholar 

  • Saad MG, Dosoky NS, Zoromba MS, Shafik HM (2019) Algal biofuels: current status and key challenges. Energies 12(10):1920

    Article  CAS  Google Scholar 

  • Sangela V, Saxena P, Harish (2018) Recent approaches and advances in algal biodiesel technology. Int Arch Appl Sci Technol 9(3):5–13

    CAS  Google Scholar 

  • Savage N (2011) Algae: the scum solution. Nature 474(7352):S15–S16

    Article  CAS  Google Scholar 

  • Shelef G, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review. Technion Research and Development Foundation Ltd., Haifa, pp 1–71

    Book  Google Scholar 

  • Shell (2020) Annual report. Retrieved April 15, 2021, from https://reports.shell.com/annual-report/2020/

  • Shi X, Jung KW, Kim DH, Ahn YT, Shin HS (2011) Direct fermentation of Laminaria japonica for biohydrogen production by anaerobic mixed cultures. Int J Hydrog Energ 36(10):5857–5864

    Article  CAS  Google Scholar 

  • Singh A, Nigam PS, Murphy JD (2011) Mechanism and challenges in commercialisation of algal biofuels. Bioresour Technol 102(1):26–34

    Article  CAS  Google Scholar 

  • Stiefel S, Dassori G (2009) Simulation of biodiesel production through transesterification of vegetable oils. Ind Eng Chem Res 48(3):1068–1071

    Article  CAS  Google Scholar 

  • Tyner WE (2008) The US ethanol and biofuels boom: its origins, current status, and future prospects. Bioscience 58(7):646–653

    Article  Google Scholar 

  • U.S. Department of Energy, Statistical and Analytical Agency (2012) Biofuels issues and trends. Retrieved April 20, 2021, from https://www.eia.gov/biofuels/issuestrends/pdf/bit.pdf

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energ 2(1):012701

    Article  Google Scholar 

  • Van Den Hende S, Beyls J, De Buyck PJ, Rousseau DP (2016) Food-industry-effluent-grown microalgal bacterial flocs as a bioresource for high-value phycochemicals and biogas. Algal Res 18:25–32

    Article  Google Scholar 

  • Verbio (2020) Annual report. Retrieved April 8, 2021, from https://www.verbio.de/en/investor-relations/news-publications/financial-reports/20192020/

  • Wicaksana F, Fane AG, Pongpairoj P, Field R (2012) Microfiltration of algae (Chlorella sorokiniana): critical flux, fouling and transmission. J Membr Sci 387:83–92

    Article  Google Scholar 

  • Wilmar International Limited (2020) Annual general meeting. Retrieved April 7, 2021, from https://wilmar-iframe.todayir.com/attachment/20210324084051364202317_en.pdf

  • Yang J, Shan H (2021) The willingness of submitting waste cooking oil (WCO) to biofuel companies in China: an evolutionary analysis in catering networks. J Clean Prod 282:125331

    Article  Google Scholar 

  • Zhang DQ, Jinadasa KBSN, Gersberg RM, Liu Y, Ng WJ, Tan SK (2014) Application of constructed wetlands for wastewater treatment in developing countries–a review of recent developments (2000–2013). J Environ Manag 141:116–131

    Article  CAS  Google Scholar 

  • Zhang Z, O’Hara IM, Mundree S, Gao B, Ball AS, Zhu N, Bai Z, Jin B (2016) Biofuels from food processing wastes. Curr Opin Biotechnol 38:97–105

    Article  CAS  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Zhang H, Ma X, Ruan R (2012) Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy 98:433–440

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raven, S., Noel, A.A., Tirkey, J.F., Tiwari, A. (2023). Recent Advancements in Municipal Wastewater as Source of Biofuels from Algae. In: Srivastava, N., Mishra, P. (eds) Basic Research Advancement for Algal Biofuels Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-6810-5_1

Download citation

Publish with us

Policies and ethics