Skip to main content

Comparison of Total Ionizing Dose Effect on Tolerance of SCL 180 nm Bulk and SOI CMOS Using TCAD Simulation

  • Conference paper
  • First Online:
Emerging Technology Trends in Electronics, Communication and Networking

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 952))

Abstract

The long-term reliability of metal oxide semiconductor (MOS) devices in space technology depends on the total ionizing dose (TID) effect. In MOS technology, power consuming, expensive, and bulky triple modular redundancy and shielding techniques are required to address radiation related issues. In this work, we simulate Semi-Conductor Laboratory (SCL) 180 nm silicon on insulator (SOI) and Bulk NMOS device for comparative study of TID effects in space technology applications. Both devices after simulation show 0.42 V and 0.62 V threshold voltage, respectively. Devices are irradiated for 15 s to achieve doses of 100 K Rad, 200 K Rad, 500 K Rad, 800 K Rad, 1 M Rad, respectively with different dose rates. Bulk 180 nm NMOS was found to be more radiation-sensitive than SOI devices. Dose rate (DR) effect of 35 µV on a Bulk device and 16 µV on SOI was observed. 267% on Bulk and 256% on SOI leakage current shift observed due to radiation. Devices show the dose rate sensitivity with varying leakage current from the range of 1.8 to 3nA/um. In both the devices, leakage current is generated because of interface charge trapped due to radiation and charge trapped. Post radiation major shift transconductance characteristics are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attix FH (1986) Introduction to radiological physics and radiation dosimetry. Wiley, New York

    Book  Google Scholar 

  2. King MP et al (2017) Analysis of TID process, geometry, and bias condition dependence in 14-nm FinFETs and implications for RF and SRAM performance. IEEE Trans Nucl Sci 64(1):285–292. https://doi.org/10.1109/TNS.2016.2634538

    Article  Google Scholar 

  3. Chen RM et al (2017) Effects of total-ionizing-dose Irradiation on SEU- and SET-induced soft errors in bulk 40-nm sequential circuits. IEEE Trans Nucl Sci 64(1):471–476. https://doi.org/10.1109/TNS.2016.2614963

    Article  Google Scholar 

  4. Zhang L et al (2017) Single event upset sensitivity of d-flip flop: comparison of PDSOI with bulk Si at 130 nm technology node. IEEE Trans Nucl Sci 64(1):683–688. https://doi.org/10.1109/TNS.2016.2636338

    Article  Google Scholar 

  5. Schwank JR et al (2000) Correlation between Co-60 and X-ray radiation-induced charge buildup in silicon-on-insulator buried oxides. IEEE Trans Nucl Sci 47(6):2175–2182

    Article  Google Scholar 

  6. Jafari H, Feghhi SAH, Boorboor S (2015) The effect of interface trapped charge on threshold voltage shift estimation for gamma irradiated MOS device. Radiat Meas 73:69–77. https://doi.org/10.1016/j.radmeas.2014.12.008

    Article  Google Scholar 

  7. Zhang CX et al (2014) Total-ionizing-dose effects and reliability of carbon nanotube FET devices. Microelectron Reliab 54(11):2355–2359. https://doi.org/10.1016/j.microrel.2014.05.011

    Article  Google Scholar 

  8. Liu F et al (2017) Radiation-hardened CMOS negative voltage reference for aerospace application. IEEE Trans Nucl Sci 64(9):2505–2510. https://doi.org/10.1109/TNS.2017.2733738

    Article  Google Scholar 

  9. Space Radiation Effects. https://www.xilinx.com/applications/aerospace-and-defense/space/radiation-effects.html. (Accessed 19 Nov 2017)

  10. J. Benfica et al Analysis of SRAM-based FPGA SEU sensitivity to combined effects of conducted EMI and TID. In: Radiation and its effects on components and systems (RADECS), 2015 15th European conference on, pp 1–4

    Google Scholar 

  11. Zheng Q et al (2017) Total ionizing dose influence on the single-event upset sensitivity of 130-nm PD SOI SRAMs. IEEE Trans Nucl Sci 64(7):1897–1904. https://doi.org/10.1109/TNS.2017.2706287

    Article  Google Scholar 

  12. Benfica J et al (2016) Analysis of SRAM-based FPGA SEU sensitivity to combined EMI and TID-imprinted effects. IEEE Trans Nucl Sci 63(2):1294–1300. https://doi.org/10.1109/TNS.2016.2523458

    Article  Google Scholar 

  13. Fleetwood DM (2018) Evolution of total ionizing dose effects in MOS devices With Moore’s law scaling. IEEE Trans Nucl Sci 65(8):1465–1481. https://doi.org/10.1109/TNS.2017.2786140

    Article  Google Scholar 

  14. Ebrahimi M, Miremadi SG, Asadi H, Fazeli M (2013) Low-cost scan-chain-based technique to recover multiple errors in TMR systems. IEEE Trans Very Large Scale Integr (VLSI) Syst 21(8):1454–1468. https://doi.org/10.1109/TVLSI.2012.2213102

  15. Ramamurthy C, Chellappa S, Vashishtha V, Gogulamudi A, Clark LT (2015) High performance low power pulse-clocked TMR circuits for soft-error hardness. IEEE Trans Nucl Sci 62(6):3040–3048. https://doi.org/10.1109/TNS.2015.2498919

    Article  Google Scholar 

  16. Adell PC et al (2014) Radiation hardening of an SiGe BiCMOS Wilkinson ADC for distributed motor controller application. IEEE Trans Nucl Sci 61(3):1236–1242. https://doi.org/10.1109/TNS.2014.2323975

    Article  Google Scholar 

  17. Barnaby HJ (2006) Total-ionizing-dose effects in modern CMOS technologies. IEEE Trans Nucl Sci 53(6):3103–3121. https://doi.org/10.1109/TNS.2006.885952

    Article  Google Scholar 

  18. Li L et al (2020) A study on ionization damage effects of anode-short MOS-controlled thyristor. IEEE Trans Nucl Sci 67(9):2062–2072. https://doi.org/10.1109/TNS.2020.3012766

    Article  Google Scholar 

  19. Colins K, Li L, Liu Y (2017) Analysis of a statistical relationship between dose and error tallies in semiconductor digital integrated circuits for application to radiation monitoring over a wireless sensor network. IEEE Trans Nucl Sci 64(5):1151–1158. https://doi.org/10.1109/TNS.2017.2687881

    Article  Google Scholar 

  20. Goiffon V et al (2017) Radiation hardening of digital color CMOS camera-on-a-chip building blocks for multi-MGy total ionizing dose environments. IEEE Trans Nucl Sci 64(1):45–53. https://doi.org/10.1109/TNS.2016.2636566

    Article  Google Scholar 

  21. Ren Z et al (2021) TID response and radiation-enhanced hot-carrier degradation in 65nm nMOSFETs: concerns on the layout dependent effects. IEEE Trans Nuclear Sci, pp 1–1. https://doi.org/10.1109/TNS.2021.3063137

  22. Ren Z et al (2020) TID response of bulk Si PMOS FinFETs: bias, fin width, and orientation dependence. IEEE Trans Nucl Sci 67(7):1320–1325. https://doi.org/10.1109/TNS.2020.2979905

    Article  Google Scholar 

  23. Witulski AF, Sternberg AL, Rowe JD, Schrimpf RD, Zydel J, Schaf J (2017) Ionizing dose-tolerant enhancement-mode cascode for high-voltage power devices. IEEE Trans Nucl Sci 64(1):382–387. https://doi.org/10.1109/TNS.2016.2636023

    Article  Google Scholar 

  24. Faccio F (1999) Radiation effects in the electronics for CMS

    Google Scholar 

  25. Stassinopoulos EG, Raymond JP (1988) The space radiation environment for electronics. Proc IEEE 76(11):1423–1442

    Article  Google Scholar 

  26. Drs2 0018sl Scl Manual|Mosfet|Spice—Documents. https://usdocument.net/the-philosophy-of-money.html?utm_source=drs2-0018sl-scl-manual-mosfet-spice. (Accessed 29 May 2018)

  27. Hofman J, Jaksic A, Sharp R, Vasovic N, Haze J (2017) In-situ measurement of total ionising dose induced changes in threshold voltage and temperature coefficients of RADFETs. IEEE Trans Nucl Sci 64(1):582–586. https://doi.org/10.1109/TNS.2016.2630275

    Article  Google Scholar 

  28. Anjum A, Vinayakprasanna NH, Pradeep TM, Pushpa N, Krishna JBM, Prakash APG A comparison of 4MeV proton and Co-60 gamma irradiation induced degradation in the electrical characteristics of N-channel MOSFETs. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms 379, no. Supplement C, pp 265–271, Jul. 2016. https://doi.org/10.1016/j.nimb.2016.04.023

  29. Cangialosi C et al (2016) On-line characterization of gamma radiation effects on single-ended Raman based distributed fiber optic sensor. IEEE Trans Nucl Sci 63(4):2051–2057. https://doi.org/10.1109/TNS.2016.2528584

    Article  Google Scholar 

  30. Gao L, Holbert K, Yu S (2017) Total ionizing dose effects of gamma-ray radiation on NbOx based selector devices for crossbar array memory. IEEE Trans Nuclear Sci, pp 1–1. https://doi.org/10.1109/TNS.2017.2700434.

  31. Neamen DA (2003) Semiconductor physics and devices: basic principles, 3rd edn. McGraw-Hill, Boston

    Google Scholar 

  32. He B, Wang Z, Sheng J, Huang S (2016) Total ionizing dose radiation effects on NMOS parasitic transistors in advanced bulk CMOS technology devices. J Semicond 37(12):124003. https://doi.org/10.1088/1674-4926/37/12/124003

    Article  Google Scholar 

  33. Aditya K et al (2019) Effect of post radiation annealing on the TID response of 0.18μm bulk NFETs. In: 2019 electron devices technology and manufacturing conference (EDTM), Singapore, Singapore, Mar 2019, pp 336–338. https://doi.org/10.1109/EDTM.2019.8731170

  34. Ilik S, Kabaoglu A, Solmaz NS, Yelten MB (2019) Modeling of total ionizing dose degradation on 180-nm n-MOSFETs using BSIM3. IEEE Trans Electron Devices 66(11):4617–4622. https://doi.org/10.1109/TED.2019.2926931

  35. Hu Z et al (2011) Comprehensive study on the total dose effects in a 180-nm CMOS technology. IEEE Trans Nucl Sci 58(3):1347–1354. https://doi.org/10.1109/TNS.2011.2132145

    Article  Google Scholar 

  36. Bonaldo S et al (2020) Total-ionizing-dose effects and low-frequency noise in 16-nm InGaAs FinFETs with HfO2/Al2O3 dielectrics. IEEE Trans Nucl Sci 67(1):210–220. https://doi.org/10.1109/TNS.2019.2957028

    Article  Google Scholar 

  37. Gorchichko M et al (2020) Total-ionizing-dose effects and low-frequency noise in 30-nm gate-length bulk and SOI FinFETs with SiO2/HfO2 gate dielectrics. IEEE Trans Nucl Sci 67(1):245–252. https://doi.org/10.1109/TNS.2019.2960815

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubham Anjankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anjankar, S., Dhavse, R. (2023). Comparison of Total Ionizing Dose Effect on Tolerance of SCL 180 nm Bulk and SOI CMOS Using TCAD Simulation. In: Dhavse, R., Kumar, V., Monteleone, S. (eds) Emerging Technology Trends in Electronics, Communication and Networking. Lecture Notes in Electrical Engineering, vol 952. Springer, Singapore. https://doi.org/10.1007/978-981-19-6737-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6737-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6736-8

  • Online ISBN: 978-981-19-6737-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics