Skip to main content

Abstract Data Models and System Design for Big Data Geospatial Analytics

  • Conference paper
  • First Online:
Emerging Technology Trends in Electronics, Communication and Networking

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 952))

  • 257 Accesses

Abstract

The objective of this research is to design an abstract framework that can be used to represent and visualize any kind of geographical phenomena. The framework aims to be generalized in nature so that it can be applicable to all different kinds of geographical phenomena. There are three different proposed abstractions, namely objects, events and processes. We also propose a generic system design framework for developing a big data geospatial analytics application. The system design proposed provides a brief overview of what a usual big data geospatial analytics system might look like. The design highlights a few important aspects of the system like data ingestion and data store selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peuquet DJ, Duan N (1995) An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data. Int J Geogr Inf Syst 9(1):7–24

    Article  Google Scholar 

  2. Yuan M (2001) Representing complex geographic phenomena in GIS. Cartogr Geogr Inf Sci 28(2):83–96

    Article  Google Scholar 

  3. Worboys MF (1994) A unified model for spatial and temporal information. Comput J 37(1):26–34

    Article  Google Scholar 

  4. Kashiwao T, Nakayama K, Ando S, Ikeda K, Lee M, Bahadori A (2017) A neural network-based local rainfall prediction system using meteorological data on the internet: a case study using data from the japan meteorological agency. Appl Soft Comput 56:317–330

    Article  Google Scholar 

  5. Hernández E, Sanchez-Anguix V, Julian V, Palanca J, Duque N (2016) Rainfall prediction: a deep learning approach. In: International conference on hybrid artificial intelligence systems. Springer, Cham pp 151–162

    Google Scholar 

  6. Wang H, Zhang L, Yin K, Luo H, Li J (2021) Landslide identification using machine learning. Geosci Front 12(1):351–364

    Article  Google Scholar 

  7. Ma Z, Mei G, Piccialli F (2020) Machine learning for landslides prevention: a survey. Neural Comput Appl 1–27

    Google Scholar 

  8. Beakta R (2015) Big data and Hadoop: a review paper. Int J Comput Sci Inf Technol

    Google Scholar 

  9. Zaharia M, Xin R, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin M, Ghodsi A, Gonzalez J, Shenker S, Stoica I (2016) Apache spark: a unified engine for big data processing. Commun ACM 59(11):56–65

    Article  Google Scholar 

  10. Eldawy A (2014) SpatialHadoop: towards flexible and scalable spatial processing using MapReduce. SIGMOD, ACM, pp 46–50

    Google Scholar 

  11. Egenhofer MJ, Al-Taha KK (1992) Reasoning about gradual changes of topological relationships

    Google Scholar 

  12. Snodgrass RT (1992) Temporal databases

    Google Scholar 

  13. Langran G (1988) Temporal GIS design tradeoffs. GIS/LIS 2:890–899

    Google Scholar 

  14. Kim S, Kanwar YS (2019) Geoycsb: a benchmark framework for the performance and scalability evaluation of NoSQL databases for geospatial workloads. In: 2019 IEEE international conference on big data (big data). IEEE, Los Angeles, CA, USA pp 3666–3675

    Google Scholar 

  15. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010) Benchmarking cloud serving systems with YCSB. In: Proceedings of the 1st ACM symposium on cloud computing. Association for computing machinery pp 143–154

    Google Scholar 

  16. More NP, Nikam VB, Sen SS (2018) Experimental survey of geospatial big data platforms. In: 2018 IEEE 25th international conference on high performance computing workshops (HiPCW). IEEE, Bengaluru, India pp 137–143

    Google Scholar 

  17. Dean J, Ghemawat S (2004) Mapreduce: simplified data processing on large clusters. In: Proceedings of the 6th conference on symposium on operating systems design implementation. USENIX Association

    Google Scholar 

  18. Patel H (2017) HBase: a NoSQL database

    Google Scholar 

  19. Obe R, Hsu L (2011) PostGIS in action. Manning Publications Co

    Google Scholar 

  20. San Francisco Street Tree data. Data SF. https://data.sfgov.org/City-Infrastructure/Street-Tree-List/tkzw-k3nq/data

  21. Uber and USGS California earthquake data. https://rawgithubusercontent.com/uber-web/kepler.gl-data/master/earthquakes/data.csv

  22. Kaggle Fires from space: Australia and New Zealand. https://www.kaggle.com/datasets/carlosparadis/fires-from-space-australia-and-new-zeland

  23. Chauhan A (2019) A review on various aspects of MongoDB databases. Int J Eng Res Technol (IJERT) 8

    Google Scholar 

  24. MongoDB MongoDB official documentation. https://docs.mongodb.com/manual/

  25. Yu J, Wu J, Sarwat M (2015) Geospark: a cluster computing framework for processing large-scale spatial data. In: Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems. Association for computing machinery

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Sheoran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sheoran, V., Verma, J.P. (2023). Abstract Data Models and System Design for Big Data Geospatial Analytics. In: Dhavse, R., Kumar, V., Monteleone, S. (eds) Emerging Technology Trends in Electronics, Communication and Networking. Lecture Notes in Electrical Engineering, vol 952. Springer, Singapore. https://doi.org/10.1007/978-981-19-6737-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6737-5_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6736-8

  • Online ISBN: 978-981-19-6737-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics