Skip to main content

Part of the book series: Uncertainty and Operations Research ((UOR))

  • 135 Accesses

Abstract

In practice, a supplier with limited capacity often puts capacity on allocation, i.e., rationing capacity through quantity competition of retailers rather than through a pricing mechanism. Capacity allocation is a common occurrence in industries in which capacity expansion is costly and time consuming and price is given exogenously (e.g., steel and paper). A supplier can use his prior beliefs on his own and the retailers’ needs to construct a capacity allocation mechanism for allocation of his capacity among retailers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blumenstein, R. (1996). Autos: How do you get a hot GMC Suburban? You wait for a computer to dole one out. Wall Street Journal April 10, B1.

    Google Scholar 

  • Cachon, G. P., & Lariviere, M. A. (1999). Capacity choice and allocation: Strategic behavior and supply chain performance. Management Science, 45, 1091–1108.

    Article  Google Scholar 

  • Cachon, G. P., & Lariviere, M. A. (1999). An equilibrium analysis of linear, proportional and uniform allocation of scarce capacity. IIE Transactions, 31, 835–849.

    Article  Google Scholar 

  • Cachon, G. P., & Lariviere, M. A. (1999). Capacity allocation using past sales: When to turn-and-earn. Management Science, 45, 685–703.

    Article  Google Scholar 

  • Chen, F., Li, J., & Zhang, H. (2013). Managing downstream competition via capacity allocation. Production and Operations Management, 22(2), 426–446.

    Article  Google Scholar 

  • Chen, Y., Su, X., & Zhao, X. (2012). Modeling bounded rationality in capacity allocation games with the quantal response equilibrium. Management Science, 58(10), 1952–1962.

    Article  Google Scholar 

  • Chen, F., & Zheng, Y. (1994). Lower bounds for multi-echelon stochastic inventory systems. Management Science, 40, 1426–1443.

    Article  Google Scholar 

  • Cho, S. H., & Tang, C. (2014). Capacity allocation under retail competition: Uniform and competitive allocations. Operations Research, 62(1), 72–80.

    Article  Google Scholar 

  • Clark, A. J., & Scarf, H. (1960). Optimal policies for a multi-echelon inventory problem. Management Science, 6, 475–490.

    Article  Google Scholar 

  • Deshpande, V., Cohen, M. A., & Donohue, K. (2003). A threshold inventory rationing policy for service differentiated demand classes. Management Science, 49(6), 683–703.

    Article  Google Scholar 

  • Deshpande, V., & Schwarz, L. B. (2002). Optimal capacity choice and allocation in decentralized supply chains. Working paper, Krannert School of Management, Purdue University, West Lafayette, Purdue.

    Google Scholar 

  • Eppen, G., & Schrage, L. (1981). Centralized ordering policies in multi-echelon systems with leadtimes and random demand. In L. B. Schwarz (Ed.), Multi-Level Production/Inventory Control Systems: Theory and Practice 16 (pp. 51–67). Amsterdam: North-Holland.

    Google Scholar 

  • Federgruen, A., & Zipkin, P. (1984). Allocation policies and cost approximations for multilocation production and inventory problems. Management Science, 30, 69–84.

    Article  Google Scholar 

  • Ha, A. Y. (1997). Inventory rationing in a make-to-stock production system with several demand classes and lost sales. Management Science, 43, 1093–1103.

    Article  Google Scholar 

  • Hall, N. G., & Liu, Z. (2010). Capacity allocation and scheduling in supply chains. In: J. J. Cochran (Ed.-in-chief), Wiley Encyclopedia of Operations Research and Management Science (pp. 576–584). New York City, New York: Wiley.

    Google Scholar 

  • Hwang, S. L., & Valeriano, L. (1992). Marketers and consumers get the jitters over severe shortages of nicotine patches. Wall Street Journal, May 22, B1.

    Google Scholar 

  • Jonsson, H., & Silver, E. (1987). Analysis of a two-echelon inventory-control system with complete redistribution. Management Science, 33, 215–227.

    Article  Google Scholar 

  • Liu, Z. (2012). Equilibrium analysis of capacity allocation with demand competition. Naval Research Logistics, 59, 254–265.

    Article  Google Scholar 

  • Kumar, A., Schwarz, L. B., & Ward, J. E. (1995). Risk-pooling along a fixed delivery route using a dynamic inventory-allocation policy. Management Science, 41, 344–362.

    Article  Google Scholar 

  • Lee, H. L., Padmanabhan, V., & Whang, S. J. (1997). Information distortion in a supply chain: The bullwhip effect. Management Science, 43(4), 546–558.

    Article  Google Scholar 

  • Schwarz, L. B. (1989). A Model for assessing the value of warehouse risk-pooling: Risk-pooling over outside-supplier leadtimes. Management Science, 35, 828–842.

    Article  Google Scholar 

  • Topkis, D. M. (1968). Optimal ordering and rationing policies in a nonstationary dynamic inventory model with \(n\)-demand classes. Management Science, 15(3), 160–176.

    Article  Google Scholar 

  • Zhong, K., & Wu, D. (2013). Pien Tze Huang gets into resource trouble, “two wings" strategy is still being formulated. First Financial Daily, February 26, C01.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Li .

Appendix

Appendix

Proof of Lemma 4.1

Note that \(G_{12}(m_1,m_2)\) in Eq. (4.12) can be written as follows.

$$\begin{aligned} G_{12}^*= & {} \max _{m_1\in (K-m_2,K]}G_{12}(m_1, m_2)\nonumber \\= & {} \left\{ \begin{array}{ll} \pi _1^*=\max _{m_1\in (K-m_2,K]}\pi _1, ~~~~~~~~~~~~~~~~~~~~~~~~\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\hbox {if } m_2\le (1-\alpha )K;\\ \pi ^*_{23}=\max \Big \{\pi ^*_2=\max _{m_1\in (K-m_2,\alpha K]}\pi _2; \qquad \pi _3^*=\max _{m_1\in (\alpha K,K]}\pi _3 \Big \}, \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~\hbox {if }m_2\in ((1-\alpha )K,K]. \end{array} \right. \end{aligned}$$
(A.1)

where

$$\begin{aligned} \pi _1= & {} (M-K-w)(K-m_2),\\ \pi _2= & {} (M-K-w)m_1,\\ \pi _3= & {} (M-K-w)\alpha K . \end{aligned}$$

Namely, we divide \(G_{12}(m_1, m_2)\) into two sub-scenarios based on retailer 2’s order quantity: sub-scenario 1: \(m_2\le (1-\alpha )K\), and sub-scenario 2: \(m_2\in ((1-\alpha )K,K]\).

Immediately, we can gain the optimal value \(\pi _1^*=(M- K-w)(K-m_2)\) and optimal solution \(m_{12-1}^*\in (K-m_2,K]\) with the sub-scenario 1: \(m_2\le (1-\alpha )K\).

Under the sub-scenario 2: \(m_2\in ((1-\alpha )K,K]\), we have

$$\begin{aligned} m_{12-2}^*= & {} \arg \max _{m_1\in (K-m_2,\alpha K]}\pi _2=\left\{ \begin{array}{ll} (K-m_2)^+, &{} \hbox {if }M-w\le K; \nonumber \\ \alpha K, &{} \hbox {if }M-w>K. \end{array}\right. \\ \pi _2^*= & {} \left\{ \begin{array}{ll} (M-K-w)(K-m_2)^+, &{} \hbox {if }M-w\le K; \\ (M-K-w)\alpha K, &{} \hbox {if }M-w>K. \end{array}\right. \end{aligned}$$
(A.2)

and

$$\begin{aligned} m_{12-3}^*= & {} \arg \max _{m_1\in (K-m_2,\alpha K]}\pi _3\in [\alpha K,K],\nonumber \\ \pi ^*_3= & {} \max _{m_1\in (\alpha K, K]}\pi _3=(M-K-w)\alpha K. \end{aligned}$$
(A.3)

Comparing \(\pi _2^*\) in Eq. (A.2) with \(\pi _3^*\) in Eq. (A.3), we can directly gain the following result with condition \(m_2\in ((1-\alpha )K,K]\) holding:

$$\begin{aligned} m_{23}^*= & {} \arg \max _{m_1}\{\pi ^*_2; \pi ^*_3\}=\left\{ \begin{array}{ll} (K-m_2)^+ &{} \hbox {if } M-w\le K; \\ \in [\alpha K,K] &{} \hbox {if }M-w>K. \end{array} \right. \\ \pi ^*_{23}= & {} \max \{\pi ^*_2; \pi ^*_3\} =\left\{ \begin{array}{ll} (M-K-w)(K-m_2)^+, &{} \hbox {if } M-w\le K; \\ (M-K-w)\alpha K, &{} \hbox {if }M-w>K. \end{array} \right. \end{aligned}$$

Consequently, by the analysis of sub-scenario 1 and sub-scenario 2, we prove the lemma.   \(\square \)

Proof of Theorem 4.1

To prove the theorem, we first introduce Lemma 4.5.

Lemma 4.5

Under condition \(M-w\in [K,(1+\alpha )K]\), if \(m_2\le \hat{\alpha }\) or \(m_2\ge M-w+2\sqrt{(M-w-K)\alpha K}\), then \(\frac{(M-w-m_2)^2}{4}\ge (M-w-K)\alpha K\). Furthermore, we have

(a) \(M-w+2\sqrt{(M-w-K)\alpha K}>2K-(M-w)\);

(b) \(\hat{\alpha }>(1-\alpha )K\);

(c) \(\hat{\alpha }<2K-(M-w)\).

Proof. Under condition \(M-w\in [K,(1+\alpha )K]\), inequality \(\frac{(M-w-m_2)^2}{4}\ge (M-w-K)\alpha K\) is equivalent to

$$\begin{aligned} m_2^2-2(M-w)m_2+(M-w)^2-4(M-w-K)\alpha K\ge 0, \end{aligned}$$

and is also equivalent to

$$\begin{aligned} m_2\ge M-w+2\sqrt{(M-w-K)\alpha K} \quad \text{ or } \quad m_2\le M-w-2\sqrt{(M-w-K)\alpha K}. \end{aligned}$$

Note that \(M-w+2\sqrt{(M-w-K)\alpha K}>2K-(M-w)\) is equivalent to \(2(M-w-K)+2\sqrt{(M-w-K)\alpha K}>0\), and that \(M-w-2\sqrt{(M-w-K)\alpha K}>(1-\alpha )K\) is equivalent to \(M-w-(1-\alpha )K>2\sqrt{(M-w-K)\alpha K}\). Further, we have that \(M-w-2\sqrt{(M-w-K)\alpha K}<2K-(M-w)\). Thus, the lemma holds.   \(\square \)

Now we prove the theorem. By Eq. (4.10), we compare \(G_{11}^*\) and \(G_{12}^*\) according the range of w, which can be divided into two cases:

Case 1: \(w\ge M-K\). In the case, we have

$$\begin{aligned} G_{11}^*= & {} \left\{ \begin{array}{ll} 0, \quad m_{11}^*=0 &{} \hbox {if }m_2\in (M-w,K]; \\ \frac{(M-w-m_2)^2}{4}, \quad m_{11}^*=\frac{M-w-m_2}{2} &{} \hbox {if }m_2\in [0,M-w]. \end{array} \right. \\ G_{12}^*= & {} \left\{ \begin{array}{ll} (M-K-w)(K-m_2), \quad m_{12}^*\in [K-m_2, K] &{} \hbox {if }m_2\in [0, (1-\alpha )K]; \\ (M-K-w)(K-m_2)^+,\quad m_{12}^*=(K-m_2)^+ &{} \hbox {if }m_2\in ((1-\alpha )K, K]. \end{array} \right. \end{aligned}$$

Case 1 can be divided into the following two subcases to analyze.

Case 1.a. \(\boldsymbol{w\in (M-(1-\alpha )K,M]}\).

In this subcase, \(0\le M-w<(1-\alpha )K<K\). Thus, we have:

if \(0\le m_2<M-w\), then \(G_{11}^*=\frac{(M-w-m_2)^2}{4}>G_{12}^*=(M-K-w)(K-m_2)\). Hence, \(\Pi _1(w,m_2)=\frac{(M-w-m_2)^2}{4}\) and \(m_1(m_2)=m_{11}^*=\frac{M-w-m_2}{2}\);

if \( m_2\in [M-w,K]\), then \(G_{11}^*=0\) and \(G_{12}^*\) is negative. Hence, \(\Pi _1(w,m_2)=0\) and \(m_1(m_2)=m_{11}^*=0\).

Case 1.a. is illustrated as follows.

figure a

Case 1.b. \(\boldsymbol{w\in [M-K,M-(1-\alpha )K]}\).

In this subcase, we have \(0<(1-\alpha )K<M-w<K\). Thus, we have:

if \(m_2\in (0, (1-\alpha )K]\), then \(G_{11}^*=\frac{(M-w-m_2)^2}{4}\) and \(G_{12}^*=(M-K-w)(K-m_2)\). We have that \(G_{11}^*> G_{12}^*\). Hence, \(\Pi _1(w,m_2)=\frac{(M-w-m_2)^2}{4}\) and \(m_1(m_2)=m_{11}^*=\frac{M-w-m_2}{2}\);

if \(m_2\in ((1-\alpha )K,M-w]\), then \(G_{11}^*=\frac{(M-w-m_2)^2}{4}\), and \(G_{12}^*=(M-K-w)(K-m_2)^+\) is negative. Thus, we have that \(G_{11}^*> G_{12}^*\). Hence, \(\Pi _1(w,m_2)=\frac{(M-w-m_2)^2}{4}\) and \(m_1(m_2)=m_{11}^*=\frac{M-w-m_2}{2}\);

if \(m_2\in (M-w,K]\), then \(G_{11}^*=0\) and \( G_{12}^*=(M-K-w)(K-m_2)^+\) is negative. Thus, we have that \(G_{11}^*> G_{12}^* \). Hence, \(\Pi _1(w,m_2)=0\) and \(m_1(m_2)=m_{11}^*=0\).

Case 1.b. is illustrated as follows.

figure b

Combining Cases 1.a. and 1.b., we have (i).

Case 2: \(w<M-K\). In this subcase, we have

$$\begin{aligned} G_{11}^*= & {} \left\{ \begin{array}{ll} \frac{(M-w-m_2)^2}{4}, \quad m_{11}^*=\frac{M-w-m_2}{2} &{} \hbox {if }m_2\le 2K-(M-w),\\ (M-K-w)(K-m_2), \quad m_{12}^*=K-m_2 &{} \hbox {if }m_2\in (2K-(M-w), K]. \end{array} \right. \\ G_{12}^*= & {} \left\{ \begin{array}{ll} (M-K-w)(K-m_2), \quad m_1^*\in [K-m_2, K] &{} \hbox {if }m_2\in [0, (1-\alpha )K]; \\ (M- K-w)\alpha K , \quad m_1^*\in [\alpha K,K] &{} \hbox {if } m_2\in ((1-\alpha )K ,K]. \end{array} \right. \end{aligned}$$

The case can be divided into the following three subcases to analyze.

Case 2.a. \(\boldsymbol{w\in (M-(1+\alpha )K,M-K)}\).

In this subcase, we know that \(0<(1-\alpha )K<\hat{\alpha }<2K-(M-w)<K\). By Lemma 4.5, we consider the following conditions:

if \(m_2\in [0,(1-\alpha )K)\), then \(G^*_{11}=\frac{(M-w-m_2)^2}{4}\) and \(G_{12}^*= (M-K-w)(K-m_2)\), which implies \(G^*_{11}>G_{12}^*\). Therefore, we have \(\Pi _1(w,m_2)=\frac{(M-w-m_2)^2}{4}\) and \(m_1(m_2)=\frac{M-w-m_2}{2}\);

if \(m_2\in [(1-\alpha )K,\hat{\alpha }]\), then \(G^*_{11}= \frac{(M-w-m_2)^2}{4}\) and \(G_{12}^*= (M-K-w)\alpha K\), which implies \(G^*_{11}>G_{12}^*\) by Lemma 4.5. Therefore, we have \(\Pi _1(w,m_2)=\frac{(M-w-m_2)^2}{4}\) and \(m_1(m_2)=\frac{M-w-m_2}{2}\);

if \(m_2\in (\hat{\alpha },2K-(M-w))\), then \(G^*_{11}=\frac{(M-w-m_2)^2}{4}\) and \(G_{12}^*= (M-K-w)\alpha K\), which implies \(G^*_{11}\le G_{12}^*\). Therefore, we have \(\Pi _1(w,m_2)=(M-K-w)\alpha K \) and \(m_1(m_2)\in [\alpha K,K]\);

if \(m_2\in [2K-(M-w),K]\), then \(G^*_{11}= (M-K-w)(K-m_2)\) and \(G_{12}^*= (M-K-w)\alpha K\), which implies \(G^*_{11}<G_{12}^*\). Therefore, we have \(\Pi _1(w,m_2)=(M-K-w)\alpha K \) and \(m_1(m_2)\in [\alpha K,K]\).

Case 2.a. is illustrated as follows.

figure c

From the analysis of Case 2.a., we have (ii).

Case 2.b. \(\boldsymbol{w\in (M-2K,M-(1+\alpha )K]}\).

In this subcase, \(0<2K-(M-w)\le (1-\alpha )K<K\). Thus, we have

if \(m_2\in [0,2K-(M-w))\), then \(G_{11}^*=\frac{(M-w-m_2)^2}{4}\) and \(G^*_{12}=(M-K-w)(K-m_2)\), which implies \(G_{11}^*>G^*_{12}\). Therefore, we have \(\Pi _1(w,m_2)=\frac{(M-w-m_2)^2}{4}\) and \(m_1(m_2)=\frac{M-w-m_2}{2}\);

if \(m_2\in [2K-(M-w),(1-\alpha )K)\), then \(G_{11}^*=(M-K-w)(K-m_2)\) and \(G^*_{12}=(M-K-w)(K-m_2)\), which implies \(G_{11}^*=G^*_{12}\). Therefore, we have \(\Pi _1(w,m_2)=(M-K-w)(K-m_2)\) and \(m_1(m_2)\in [K-m_2,K]\);

if \(m_2\in [(1-\alpha )K,K]\), then \(G_{11}^*=(M-K-w)(K-m_2)\) and \(G^*_{12}=(M- K-w)\alpha K\), which implies \(G_{11}^*<G^*_{12}\). Therefore, we have \(\Pi _1(w,m_2)=(M-K-w)\alpha K\) and \(m_1(m_2)\in [\alpha K,K]\).

Case 2.b. is illustrated as follows.

figure d

From the analysis of Case 2.b., we have (iii).

Case 2.c. \(\boldsymbol{w\le M-2K}\).

In this subcase, \(0<(1-\alpha )K<K\), then we have

if \(m_2\in [0,(1-\alpha )K)\), then we can obtain that \(G_{11}^*=(M-K-w)(K-m_2)\) and \(G_{12}^*=(M-K-w)(K-m_2)\), which implies that \(G_{11}^*=G_{12}^* \). Therefore, we have \(\Pi _1(w,m_2)=(M-K-w)(K-m_2)\) and \(m_1(m_2)\in [K-m_2,K]\);

if \(m_2\in [(1-\alpha )K,K]\), then we can obtain that \(G_{11}^*=(M-K-w)(K-m_2)\) and \(G_{12}^*=(M- K-w )\alpha K\), which implies that \(G_{11}^*\le G_{12}^* \). Therefore, we have \(\Pi _1(w,m_2)=(M-K-w)\alpha K\) and \(m_1(m_2)\in [\alpha K,K]\).

Case 2.c. is illustrated as follows.

figure e

From the analysis if Case 2.c., we have (iv).   \(\square \)

Proof of Lemma 4.2

Note that \(G_{22}(m_1, m_2)\) can be written as follows.

$$\begin{aligned} G_{22}^*= & {} \max _{m_2\in (K-m_1,K]} G_{22}(m_1, m_2)\nonumber \\= & {} \left\{ \begin{array}{ll} \hat{\pi }_1^*=\max _{m_2\in (K-m_1,K]}\hat{\pi }_1, \qquad \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \hbox {if } m_1\le \alpha K;\\ \hat{\pi }^*_{23}=\max \Big \{\hat{\pi }^*_2=\max _{m_2\in (K-m_1,(1-\alpha ) K]}\hat{\pi }_2;\qquad \hat{\pi }_3^*=\max _{m_2\in ((1-\alpha ) K,K]}\hat{\pi }_3 \Big \}, \\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \hbox {if }m_1\in ( \alpha K,K]. \end{array} \right. \qquad \end{aligned}$$
(A.4)

where

$$\begin{aligned} \hat{\pi }_1= & {} (M-K-w) (K-m_1),\\ \hat{\pi }_2= & {} (M-K-w)m_2,\\ \hat{\pi }_3= & {} (M-K-w)(1-\alpha ) K . \end{aligned}$$

It is easy to obtain that

$$\begin{aligned} m_{21}^*= & {} \arg \max _{m_2\in (K-m_1,K]}\hat{\pi }_1\in (K-m_1,K],\nonumber \\ \hat{\pi }_1^*= & {} (M-K-w) (K-m_1). \end{aligned}$$
(A.5)

With condition \(m_1\in ( \alpha K,K]\), we have

$$\begin{aligned} \hat{\pi }^*_2= & {} \max _{m_2\in (K-m_1,(1-\alpha ) K]}\hat{\pi }_2\\= & {} \left\{ \begin{array}{ll} (M-K-w)(K-m_1)^+, &{} \hbox {if }M-w\le K; \\ (M-K-w)(1-\alpha )K, &{} \hbox {if }M-w>K. \end{array}\right. \end{aligned}$$
$$\begin{aligned} \hat{\pi }^*_3= & {} \max _{m_2\in ((1-\alpha ) K, K]}\hat{\pi }_3=(M-K-w)(1-\alpha ) K , \quad m_{2}^*\in ((1-\alpha ) K,K]. \end{aligned}$$

Comparing \(\pi _2^*\) with \(\pi _3^*\), we can directly gain the following result with condition \(m_1\in (\alpha K,K]\) holding:

$$\begin{aligned} m_{23}^*= & {} \arg \max _{m_2}\{\hat{\pi }^*_2; \hat{\pi }^*_3\}\\= & {} \left\{ \begin{array}{ll} (K-m_1)^+ &{} \hbox {if } M-w\le K; \\ \in [(1-\alpha )K,K] &{} \hbox {if }M-w>K. \end{array} \right. \\ \hat{\pi }^*_{23}= & {} \max \{\hat{\pi }^*_2; \hat{\pi }^*_3\}\\= & {} \left\{ \begin{array}{ll} (M-K-w)(K-m_1)^+, &{} \hbox {if } M-w\le K; \\ (M-K-w)(1-\alpha )K, &{} \hbox {if }M-w>K. \end{array} \right. \end{aligned}$$

Hence, the lemma holds.   \(\square \)

Proof of Theorem 4.2 First, we would like to introduce the following result: inequality \(\frac{(M-w-m_1)^2}{4}>(M-K-w)(1-\alpha )K\) is equivalent to \(m_1<\beta \) or \(m_1>M-w+2\sqrt{(M-K-w)(1-\alpha )K}\). Note that inequality \(\frac{(M-w-m_1)^2}{4}>(M-K-w)(1-\alpha )K\) is equivalent to \(M-w-m_1>2\sqrt{(M-K-w)(1-\alpha )K}\) or \(M-w-m_1<-2\sqrt{(M-K-w)(1-\alpha )K}\), and thus the result holds. This result will be implicitly used in the following proof.

With Eq. (4.13) and Lemma 4.2, we can divide the problem into the following two cases to compare \(G_{21}^*\) and \(G_{22}^*\) according the range of w

Case 1: \(w\ge M-K\). In the case, we have

$$\begin{aligned} G_{21}^*= & {} \left\{ \begin{array}{ll} 0, \quad m_{21}^*=0 &{} \hbox {if }m_1\in (M-w,K]; \\ \frac{(M-w-m_1)^2}{4}, \quad m_{21}^*=\frac{M-w-m_1}{2} &{} \hbox {if }m_1\in [0,M-w]. \end{array} \right. \\ G_{22}^*= & {} \left\{ \begin{array}{ll} (M-K-w)(K-m_1), \quad m_{22}^*\in [K-m_1, K] &{} \hbox {if }m_1\in [0, \alpha K]; \\ (M-K-w)(K-m_1)^+,\quad m_{22}^*=(K-m_1)^+ &{} \hbox {if }m_1\in (\alpha K, K]. \end{array} \right. \end{aligned}$$

Case 1 can be divided into the following two subcases to analyze.

Case 1.a. \(\boldsymbol{w\in (M-\alpha K,M]}\).

In this subcase, \(0\le M-w<\alpha K<K\). Thus, we have:

if \(0\le m_1<M-w\), then \(G_{21}^*=\frac{(M-w-m_1)^2}{4}>G_{22}^*=(M-K-w)(K-m_1)\). Hence, \(\Pi _2(w,m_1)=\frac{(M-w-m_1)^2}{4}\) and \(m_2(m_1)=m_{21}^*=\frac{M-w-m_1}{2}\);

if \( m_1\in [M-w,K]\), then \(G_{21}^*=0\) and \(G_{22}^*\) is negative. Hence, \(\Pi _1(w,m_1)=0\) and \(m_2(m_1)=m_{21}^*=0\).

Case 1.a. is illustrated as follows.

figure f

Case 1.b. \(\boldsymbol{w\in [M-K,M-\alpha K]}\).

In this subcase, we have \(0<\alpha K<M-w<K\). Thus, we have:

if \(m_1\in (0, \alpha K]\), then \(G_{21}^*=\frac{(M-w-m_1)^2}{4}\) and \(G_{22}^*=(M-K-w)(K-m_1)\). We have that \(G_{21}^*> G_{22}^*\). Hence, \(\Pi _2(w,m_1)=\frac{(M-w-m_1)^2}{4}\) and \(m_2(m_1)=m_{21}^*=\frac{M-w-m_1}{2}\);

if \(m_1\in (\alpha K,M-w]\), then \(G_{21}^*=\frac{(M-w-m_1)^2}{4}\), and \(G_{22}^*=(M-K-w)(K-m_1)^+\) is negative. Thus, we have that \(G_{21}^*> G_{22}^*\). Hence, \(\Pi _2(w,m_1)=\frac{(M-w-m_1)^2}{4}\) and \(m_2(m_1)=m_{21}^*=\frac{M-w-m_1}{2}\);

if \(m_1\in (M-w,K]\), then \(G_{21}^*=0\) and \( G_{22}^*=(M-K-w)(K-m_1)^+\) is negative. Thus, we have that \(G_{21}^*> G_{22}^* \). Hence, \(\Pi _2(w,m_1)=0\) and \(m_2(m_1)=m_{21}^*=0\).

Case 1.b. is illustrated as follows.

figure g

Combining Cases 1.a. and 1.b., we have (i).

Case 2: \(w<M-K\). In this subcase, we have

$$\begin{aligned} G_{21}^*= & {} \left\{ \begin{array}{ll} \frac{(M-w-m_1)^2}{4}, \quad m_2^*=\frac{M-w-m_1}{2} &{} \hbox {if }m_1\le 2K-(M-w),\\ (M-K-w)(K-m_1), \quad m_2^*=K-m_1 &{} \hbox {if }m_1\in (2K-(M-w), K]. \end{array} \right. \\ G_{22}^*= & {} \left\{ \begin{array}{ll} (M-K-w)(K-m_1), \quad m_2^*\in (K-m_1, K] &{} \hbox {if }m_1\in [0, \alpha K]; \\ (M- K-w)(1-\alpha ) K , \quad m_2^*\in [(1-\alpha ) K,K] &{} \hbox {if } m_1\in (\alpha K ,K]. \end{array} \right. \end{aligned}$$

The case can be divided into the following three subcases to analyze.

Case 2.a. \(\boldsymbol{M-w\in (M-(2-\alpha )K,M-K)}\).

In this subcase, we know that \(0<\alpha K<\beta<2K-(M-w)<K\). By Lemma 4.5, we consider the following conditions:

if \(m_1\in [0,\alpha K)\), then \(G^*_{21}=\frac{(M-w-m_1)^2}{4}\) and \(G_{22}^*= (M-K-w)(K-m_1)\), which implies \(G^*_{21}>G_{22}^*\). Therefore, we have \(\Pi _2(w,m_1)=\frac{(M-w-m_1)^2}{4}\) and \(m_2(m_1)=\frac{M-w-m_1}{2}\);

if \(m_1\in [\alpha K,\beta ]\), then \(G^*_{21}= \frac{(M-w-m_1)^2}{4}\) and \(G_{22}^*= (M-K-w)(1-\alpha ) K\), which implies \(G^*_{21}\ge G_{22}^*\) by Lemma 4.5. Therefore, we have \(\Pi _2(w,m_1)=\frac{(M-w-m_1)^2}{4}\) and \(m_2(m_1)=\frac{M-w-m_1}{2}\);

if \(m_1\in (\beta ,2K-(M-w))\), then \(G^*_{21}=\frac{(M-w-m_1)^2}{4}\) and \(G_{22}^*= (M-K-w)(1-\alpha ) K\), which implies \(G^*_{21}< G_{22}^*\). Therefore, we have \(\Pi _2(w,m_1){=}(M-K-w)(1-\alpha )K \) and \(m_2(m_1)\in [(1-\alpha ) K,K]\);

if \(m_1\in [2K-(M-w),K]\), then \(G^*_{21}= (M-K-w)(K-m_1)\) and \(G_{22}^*= (M-K-w)(1-\alpha ) K\), which implies \(G^*_{21}<G_{22}^*\). Therefore, we have \(\Pi _2(w,m_1)=(M-K-w)(1-\alpha )K \) and \(m_2(m_1)\in [(1-\alpha ) K,K]\).

Case 2.a. is illustrated as follows.

figure h

From the analysis of Case 2.a., we have (ii).

Case 2.b. \(\boldsymbol{w\in (M-2K,M-(2-\alpha )K]}\).

In this subcase, \(0<2K-(M-w)\le (2-\alpha )K<K\). Thus, we have

if \(m_1\in [0,2K-(M-w))\), then \(G_{21}^*=\frac{(M-w-m_1)^2}{4}\) and \(G^*_{22}=(M-K-w)(K-m_1)\), which implies \(G_{21}^*>G^*_{22}\). Therefore, we have \(\Pi _2(w,m_1)=\frac{(M-w-m_1)^2}{4}\) and \(m_2(m_1)=\frac{M-w-m_1}{2}\);

if \(m_1\in [2K-(M-w),\alpha K)\), then \(G_{21}^*=(M-K-w)(K-m_1)\) and \(G^*_{22}=(M-K-w)(K-m_1)\), which implies \(G_{21}^*=G^*_{22}\). Therefore, we have \(\Pi _2(w,m_1)=(M-K-w)(K-m_1)\) and \(m_2(m_1)\in [K-m_1,K]\);

if \(m_1\in [\alpha K,K]\), then \(G_{21}^*=(M-K-w)(K-m_1)\) and \(G^*_{22}=(M- K-w)(1-\alpha ) K\), which implies \(G_{21}^*<G^*_{22}\). Therefore, we have \(\Pi _2(w,m_1)=(M-K-w)(1-\alpha )K\) and \(m_2(m_1)\in [(1-\alpha ) K,K]\).

Case 2.b. is illustrated as follows.

figure i

From the analysis of Case 2.b., we have (iii).

Case 2.c. \(\boldsymbol{w\le M-2K}\).

In this subcase, \(0<\alpha K<K\), then we have

if \(m_1\in [0,\alpha K)\), then we can obtain that \(G_{21}^*=(M-K-w)(K-m_1)\) and \(G_{22}^*=(M- K-w)(K-m_1)\), which implies that \(G_{21}^*=G_{22}^* \). Therefore, we have \(\Pi _2(w,m_1)=(M-K-w)(K-m_1)\) and \(m_2(m_1)\in [K-m_1,K]\);

if \(m_1\in [\alpha K,K]\), then we can obtain that \(G_{21}^*=(M-K-w)(K-m_1)\) and \(G_{22}^*=(M- K-w )(1-\alpha ) K\), which implies that \(G_{21}^*\le G_{22}^* \). Therefore, we have \(\Pi _2(w,m_1)=(M-K-w)(1-\alpha ) K\) and \(m_2(m_1)\in [(1-\alpha ) K,K]\).

Case 2.c. is illustrated as follows.

figure j

From the analysis if Case 2.c., we have (iv).   \(\square \)

Proof of Theorem 4.3

Case 1: \(w\in [0,M-2K)\) In this case, we have:

$$\begin{aligned}&m_1(m_2)\in \, {\left\{ \begin{array}{ll} {[}K-m_2,K], &{} \text {if } m_2\in [0,(1-\alpha )K); \\ {[}\alpha K,K], &{} \text {if } m_2\in {[}(1-\alpha )K,K]. \end{array}\right. }&\\ \\&m_2(m_1)\in \, {\left\{ \begin{array}{ll} {[}K-m_1,K], &{} \text {if } m_1\in [0, \alpha K); \\ {[}(1-\alpha ) K, K], &{} \text {if } m_1\in [ \alpha K ,K]. \end{array}\right. }&\end{aligned}$$

In this case, we can obtain the Nash equilibria \(m_1^*\times m_2^*\in [\alpha K,K]\times [(1-\alpha )K,K]\).

Case 2: \(w\in [M-2K, M-(1+\alpha )K)\). In this case, we have:

$$\begin{aligned} m_1(m_2){\left\{ \begin{array}{ll} =\frac{M-w-m_2}{2}, &{} \hbox {if } m_2<2K-(M-w);\\ \in [K-m_2,K], &{} \hbox {if } m_2\in [2K-(M-w),(1-\alpha )K);\\ \in [\alpha K,K], &{} \hbox {if } m_2\in [(1-\alpha )K,K]. \end{array}\right. } \end{aligned}$$
$$\begin{aligned} m_2(m_1){\left\{ \begin{array}{ll} =\frac{M-w-m_1}{2}, &{} \hbox {if } m_1<2K-(M-w);\\ \in [K-m_1,K], &{} \hbox {if } m_1\in [2K-(M-w), \alpha K);\\ \in [(1-\alpha ) K, K], &{} \hbox {if } m_1\in [ \alpha K ,K]. \end{array}\right. } \end{aligned}$$

In this case, we can prove that \(2K-(M-w)<\frac{M-w}{3}\) and obtain the Nash equilibria \(m_1^*\times m_2^*\in [\alpha K,K]\times [(1-\alpha ) K,K]\).

Case 3: \(w\in [M-(1+\alpha )K,M-(2-\alpha )K)\). In this case, we have:

$$\begin{aligned} m_1(m_2){\left\{ \begin{array}{ll} =\frac{M-w-m_2}{2}, &{} \hbox {if } m_2\le \hat{\alpha };\\ \in [\alpha K,K], &{} \hbox {if } m_2\in (\hat{\alpha },K]. \end{array}\right. } \end{aligned}$$
$$\begin{aligned} m_2(m_1){\left\{ \begin{array}{ll} =\frac{M-w-m_1}{2}, &{} \hbox {if } m_1<2K-(M-w);\\ \in [K-m_1,K], &{} \hbox {if } m_1\in [2K-(M-w), \alpha K);\\ \in [(1-\alpha ) K, K], &{} \hbox {if } m_1\in [ \alpha K ,K]. \end{array}\right. } \end{aligned}$$

Note that if \(w\ge M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2}\), then there exist multiple Nash equilibria \((m_1^*,m_2^*)=(\frac{M-w}{3},\frac{M-w}{3})\) and \(m_1^*\times m_2^*\in [\alpha K,K]\times [\hat{\alpha },K]\), where in the later set of equilibria we have that \(g_1(m_1^*,m_2^*)=\alpha K\) and \(g_2(m_1^*,m_2^*)=(1-\alpha )K\). Furthermore, the former equilibrium \((\frac{M-w}{3},\frac{M-w}{3})\) dominates any equilibrium belonging to \([\alpha K,K]\times [\hat{\alpha }K,K]\) in the sense of it gains larger profit for both retailers. If \(w<M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2}\), then we have that in equilibrium the two retailers’ total order size is no less than K, and the equilibria are \(m_1^*\times m_2^*\in [\alpha K,K]\times [\hat{\alpha },K]\).

Case 4: \(w\in [M-(2-\alpha )K, M-K)\). In this case, we have:

$$\begin{aligned} m_1(m_2){\left\{ \begin{array}{ll} =\frac{M-w-m_2}{2}, &{} \hbox {if } m_2\le \hat{\alpha };\\ \in [\alpha K,K], &{} \hbox {if } m_2\in (\hat{\alpha },K]. \end{array}\right. } \end{aligned}$$
$$\begin{aligned} m_2(m_1){\left\{ \begin{array}{ll} =\frac{M-w-m_1}{2}, &{} \hbox {if } m_1\le \beta ;\\ \in [(1-\alpha )K,K], &{} \hbox {if } m_1\in (\beta , K]; \end{array}\right. } \end{aligned}$$

Note that if \(w\ge M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2}\), then there exist multiple Nash equilibria \((m_1^*,m_2^*)=(\frac{M-w}{3},\frac{M-w}{3})\) and \(m_1^*\times m_2^*\in [\beta ,K]\times [\hat{\alpha },K]\), where in the later set of equilibria we have that \(g_1(m_1^*,m_2^*)=\alpha K\) and \(g_2(m_1^*,m_2^*)=(1-\alpha )K\). Furthermore, the former equilibrium \((\frac{M-w}{3},\frac{M-w}{3})\) dominates any equilibrium belonging to \([\beta ,K]\times [\hat{\alpha },K]\) in the sense of it gains larger profit for both retailers. If \(w<M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2}\), then we have that in equilibrium the two retailers’ total order size is no less than K, and the equilibria are \(m_1^*\times m_2^*\in [\beta ,K]\times [\hat{\alpha },K]\).

Case 5: \(w\in [M-K,M]\) In this case, we have:

$$\begin{aligned} m_1(m_2)={\left\{ \begin{array}{ll}\frac{M-w-m_2}{2}, &{} \hbox {if } m_2<M-w;\\ 0, &{} \hbox {if } m_2\in [M-w,K].\end{array}\right. } \end{aligned}$$
$$\begin{aligned} m_2(m_1)={\left\{ \begin{array}{ll}\frac{M-w-m_1}{2}, &{} \hbox {if } m_1<M-w;\\ 0, &{} \hbox {if } m_1\in [M-w,K]. \end{array}\right. } \end{aligned}$$

From the equations, we can gain the Nash equilibrium \((m_1^*,m_2^*)=(\frac{M-w}{3},\frac{M-w}{3})\). Combining Cases 1–5, the theorem holds.   \(\square \)

Proof of Lemma 4.3

(i) To prove \(3K-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha }\) is decreasing in \(\alpha \in [\frac{1}{2},1]\) is equivalent to prove that \( \sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha }\) is increasing in \(\alpha \in [\frac{1}{2},1]\), which is further equivalent to

$$\begin{aligned} \sqrt{[9(\alpha +\Delta )-4](\alpha +\Delta )}+1-3(\alpha +\Delta ) >\sqrt{(9\alpha -4)\alpha }+1-3\alpha , \end{aligned}$$

where \(\Delta >0\). After straightforward algebra operations, we have prove (i).

Part (ii) can be proven similarly.   \(\square \)

Proof of Theorem 4.4

In view of Eq. (4.14), the supplier will choose his optimal wholesale price to maximize her profit:

$$\begin{aligned} \max \left\{ \max _{w\in (0, M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2})}wK; \max _{w\in [M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2},M)}\frac{2(M-w)w}{3}\right\} . \end{aligned}$$
(A.6)

Note that

$$\begin{aligned} K( M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2})> & {} (M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2})(3\alpha -\sqrt{(9\alpha -4)\alpha })K,\quad \quad \end{aligned}$$
(A.7)
$$\begin{aligned} \arg \max _w \{\frac{2(M-w)w}{3}\}= & {} \frac{M}{2},\end{aligned}$$
(A.8)
$$\begin{aligned} \max _w \{\frac{2(M-w)w}{3}\}= & {} \frac{M^2}{6}. \end{aligned}$$
(A.9)

Therefore, if \(\frac{M}{2}\le M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2}\), i.e., \( M\ge 9\alpha K-3\sqrt{(9\alpha -4)\alpha }K \), then by (A.7) and (A.8), we have \(w^*(\alpha )=( M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2})^-\) and \({\Pi }_{s}^*(\alpha )=K[( M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2})^-]\).

When \(\frac{M}{2}> M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2}\), i.e., \(M< 9\alpha K-3\sqrt{(9\alpha -4)\alpha }K\), we can show that

$$\begin{aligned} K[(M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2})-] \le \frac{M^2}{6} ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~\quad \nonumber \\ ~~~~~~~~ ~~~~~\text{ for } M\in (0, 3K-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha }K];\quad \quad \end{aligned}$$
(A.10)
$$\begin{aligned} \text{ and } K[(M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2})-] > \frac{M^2}{6} ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~\quad \nonumber \\ ~~~~~~ ~~\text{ for } M\in ( 3K-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha }K,9\alpha K-3\sqrt{(9\alpha -4)\alpha }K ). \quad \quad \end{aligned}$$
(A.11)

Hence, we have that

if \(M\in (0, 3K-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha }K]\), then by (A.8), (A.9) and (A.10), we have that \( w^*(\alpha )= \frac{M}{2}\) and \({\Pi }_{s}^*(\alpha )= \frac{M^2}{6}\);

if \(M\in (3K{-}3\sqrt{\sqrt{(9\alpha -4)\alpha }{+}1-3\alpha }K, 9\alpha K-3\sqrt{(9\alpha -4)\alpha }K)\), then by (A.8), (A.9) and (A.11), we have \(w^*=M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2}\) and \({\Pi }_{s}^*(\alpha )= K[(M-\frac{9\alpha K-3\sqrt{(9\alpha -4)\alpha }K}{2})^-]\).

Consequently, the theorem holds.   \(\square \)

Proof of Theorem 4.5

The theorem follows Theorem 4.4 with straightforward algebra operations, and hence we omit the proof for preciseness.   \(\square \)

Proof of Lemma 4.4

The lemma can be proven using straightforward algebra operations, and hence we omit the proof for preciseness.   \(\square \)

Proof of Theorem 4.6

Part (i) follows Theorem 4.4 and Proposition 4.1.

If \(M<3(2-\sqrt{2})K\), then retailers’ profits are \(\Pi _1^*=M^2/36\), \(\Pi _2^*=M^2/36\) and \(\Pi _1^*+\Pi _2^*=M^2/18\) under proportional allocation, the same as under fixed factor allocation with \(\alpha =\frac{\sqrt{2}}{2}\). If \(M\ge 3(2-\sqrt{2})K\), then retailers’ profits are \(\Pi _1^*=\frac{3\sqrt{2}-4}{2}K^2\), \(\Pi _2^*=\frac{3\sqrt{2}-4}{2}K^2\) and \(\Pi _1^*+\Pi _2^*=(3\sqrt{2}-4)K^2\) under proportional allocation. Under fixed factor allocation with \(\alpha =\frac{\sqrt{2}}{2}\) , retailers’ profits are \(\Pi _1^*(\alpha )=(3-2\sqrt{2})K^2>\Pi _1^*\), \(\Pi _2^*(\alpha )=(5\sqrt{2}-7)K^2<\Pi _2^*\), and \(\Pi _1^*(\alpha )+\Pi _2^*(\alpha )=(3\sqrt{2}-4)K^2 = \Pi _1^*+\Pi _2^*\). Hence, part (ii) of the theorem holds.   \(\square \)

Proof of Theorem 4.7

Following Eq. (4.15), the proof is divided into two cases.

Case 1. If \(K\in [0,\ \frac{M}{3-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha }})\), then the first order condition is

$$\begin{aligned} \frac{\partial \hat{\Pi }^*_s(K)}{\partial K}=(M-c)-\big (9\alpha -3\sqrt{(9\alpha -4)\alpha }\big )K=0. \end{aligned}$$

which follows from \(0<\frac{(M-c)}{9\alpha -3\sqrt{(9\alpha -4)\alpha }}<\frac{M}{3-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha } }\). Hence,

$$\begin{aligned}{} & {} \arg \max _{K\in [0, \ \frac{M}{3-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha } })} \{(M-\frac{9\alpha -3\sqrt{(9\alpha -4)\alpha }}{2}K)K-cK \} =\frac{ M-c }{9\alpha -3\sqrt{(9\alpha -4)\alpha }},\quad \quad \\{} & {} \max _{K\in [0, \frac{M}{3-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha } })} \{(M-\frac{9\alpha -3\sqrt{(9\alpha -4)\alpha }}{2}K)K-cK \} =\frac{(M-c)^2}{2(9\alpha -3\sqrt{(9\alpha -4)\alpha })}. \quad \end{aligned}$$

Case 2. It is clear that

$$\begin{aligned}{} & {} \arg \max _{K\in [\frac{M}{3-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha }}, \ \infty )} \{\frac{M^2}{6}-cK \} =\frac{M}{3-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha } }, \\{} & {} \max _{K\in [\frac{M}{3-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha } }, \ \infty )} \{\frac{M^2}{6}-cK \}=\frac{M^2}{6}-\frac{cM}{3-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha } }.\quad \end{aligned}$$

Note that

$$\begin{aligned} \frac{(M-c)^2}{2(9\alpha -3\sqrt{(9\alpha -4)\alpha })}-\Big (\frac{M^2}{6}-\frac{cM}{3-3\sqrt{\sqrt{(9\alpha -4)\alpha }+1-3\alpha }}\Big )\\ =\big [M\big (\sqrt{\sqrt{(9\alpha -4)\alpha }-3\alpha +1}\big )+c\big ]^2>0. \end{aligned}$$

So, the optimal capacity is that \(K^*(\alpha )=\frac{ M-c }{9\alpha -3\sqrt{(9\alpha -4)\alpha }} \). Using Theorem 4.4 and Eq. (4.15), the optimal wholesale price and profit are \((\frac{M+c}{2})^-\) and \(\frac{(M-c)^2}{2(9\alpha -3\sqrt{(9\alpha -4)\alpha })}\), respectively.

Therefore, the theorem holds.   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J., Cai, X., Li, B. (2022). Allocating Capacity with Demand Competition: Fixed Factor Allocation. In: Capacity Allocation Mechanisms and Coordination in Supply Chain Under Demand Competition. Uncertainty and Operations Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-6577-7_4

Download citation

Publish with us

Policies and ethics