Skip to main content

Half-Space Problems for the Boltzmann Equation of Multicomponent Mixtures

  • Conference paper
  • First Online:
From Kinetic Theory to Turbulence Modeling (INdAM 2021)

Part of the book series: Springer INdAM Series ((SINDAMS,volume 51))

Abstract

Half-space problems in the kinetic theory of gases are of great importance in the study of the asymptotic behavior of solutions of boundary value problems for the Boltzmann equation for small Knudsen numbers. They provide the boundary conditions for the fluid-dynamic-type equations and Knudsen-layer corrections to the solution of the fluid-dynamic-type equations in a neighborhood of the boundary. These problems are well studied for single species, including some important contributions by Carlo Cercignani, and it is well-known that the number of additional conditions needed to be imposed depends on different regimes for the Mach number (corresponding to subsonic/supersonic evaporation/condensation). However, the case of mixtures is not as well studied in the literature. We will address some extensions of the results for half-space problems for single species to the case of multicomponent mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoki, K., Bardos, C., Takata, S.: Knudsen layer for gas mixtures. J. Stat. Phys. 112, 629–655 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babovsky, H.: Shocks in the light of discrete velocity models. AIP Conf. Proc. 2132, 060002 (2019)

    Article  Google Scholar 

  3. Bardos, C., Yang, X.: The classification of well-posed kinetic boundary layer for hard sphere gas mixtures. Commun. Partial Differ. Equ. 37, 1286–1314 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bardos, C., Golse, F., Sone, Y.: Half-space problems for the Boltzmann equation: a survey. J. Stat. Phys. 124, 275–300 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernhoff, N.: On half-space problems for the linearized discrete Boltzmann equation. Riv. Mat. Univ. Parma 9, 73–124 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Bernhoff, N.: On half-space problems for the weakly non-linear discrete Boltzmann equation. Kinet. Relat. Models 3, 195–222 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernhoff, N.: Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures. Kinet. Relat. Models 5, 1–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernhoff, N.: Discrete velocity models for multicomponent mixtures and polyatomic molecules without nonphysical collision invariants and shock profiles. AIP Conf. Proc. 1786, 040005 (2016)

    Google Scholar 

  9. Bernhoff, N.: Boundary layers for discrete kinetic models: multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinet. Relat. Models 10, 925–955 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bernhoff, N.: Discrete velocity models for polyatomic molecules without nonphysical collision invariants. J. Stat. Phys. 172, 742–761 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bernhoff, N.: Linear half-space problems in kinetic theory: abstract formulation and regime transitions (2022). arXiv: 2201.03459

    Google Scholar 

  12. Bernhoff, N.: Linearized Boltzmann collision operator: I. Polyatomic molecules modeled by a discrete internal energy variable and multicomponent mixtures (2022). arXiv: 2201.01365

    Google Scholar 

  13. Bernhoff, N., Golse, F.: On the boundary layer equations with phase transition in the kinetic theory of gases. Arch. Ration. Mech. Anal. 240, 51–98 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bernhoff, N., Vinerean, M.C.: Discrete velocity models for multicomponent mixtures without nonphysical collision invariants. J. Stat. Phys. 165, 434–453 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bobylev, A.V., Bernhoff, N.: Discrete velocity models and dynamical systems. In: Lecture Notes on the Discretization of the Boltzmann Equation, pp. 203–222. World Scientific, Singapore (2003)

    Google Scholar 

  16. Bobylev, A.V., Cercignani, C.: Discrete velocity models for mixtures. J. Stat. Phys. 91, 327–341 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bobylev, A.V., Cercignani, C.: Discrete velocity models without non-physical invariants. J. Stat. Phys. 97, 677–686 (1999)

    Article  MATH  Google Scholar 

  18. Boudin, L., Grec, B., Pavić, M., Salvarani, F.: Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinet. Relat. Models 6, 137–157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Briant, M., Daus, E.S.: The Boltzmann equation for a multi-species mixture close to global equilibrium. Arch. Ration. Mech. Anal. 222, 1367–1443 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cercignani, C.: Half-space problems in the kinetic theory of gases. In: Trends in Applications of Pure Mathematics to Mechanics, pp. 35–50. Springer, Berlin (1986)

    Google Scholar 

  21. Cercignani, C.: The Boltzmann Equation and its Applications. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  22. Cercignani, C.: Rarefied Gas Dynamics. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  23. Daus, E.S., Jungel, A., Mouhot, C., Zamponi, S.: Hypocoercivity for a linearized multispecies Boltzmann system. SIAM J. Math. Anal. 48, 538–568 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Golse, F.: Analysis of the boundary layer equation in the kinetic theory of gases. Bull. Inst. Math. Acad. Sin. 3, 211–242 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Liu, T.P., Yu, S.H.: Invariant manifolds for steady Boltzmann flows and applications. Arch. Ration. Mech. Anal. 209, 869–997 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sone, Y.: Kinetic Theory and Fluid Dynamics. Birkhauser, Basel (2002)

    Book  MATH  Google Scholar 

  27. Sone, Y.: Molecular Gas Dynamics. Birkhauser, Basel (2007)

    Book  MATH  Google Scholar 

  28. Ukai, S., Yang, T., Yu, S.H.: Nonlinear boundary layers of the Boltzmann equation: I. Existence. Commun. Math. Phys. 236, 373–393 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is indebted to Prof. F. Golse for valuable discussions and kind hospitality during visits to Paris and acknowledges the support by French Institute in Sweden (through the FRÖ program in 2016) and SveFUM (in 2017 and 2019) for his visits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niclas Bernhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bernhoff, N. (2023). Half-Space Problems for the Boltzmann Equation of Multicomponent Mixtures. In: Barbante, P., Belgiorno, F.D., Lorenzani, S., Valdettaro, L. (eds) From Kinetic Theory to Turbulence Modeling. INdAM 2021. Springer INdAM Series, vol 51. Springer, Singapore. https://doi.org/10.1007/978-981-19-6462-6_4

Download citation

Publish with us

Policies and ethics