Abstract
The lognormal distribution, very common in physical and biological applications, also appears in various phenomena related to economic and social activities. In socio-economics these phenomena describe in most cases the evolution in time of the distribution of a certain attribute of agents, which aim to reach a desired target by repeated attempts. By resorting to the analogies of these problems with the classical kinetic theory of rarefied gases, we aim to illustrate the nature of the microscopic interactions which give rise to a macroscopic lognormal distribution profile.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aitchison, J., Brown, J.A.C.: The Log-Normal Distribution. Cambridge University Press, Cambridge (1957)
Bobylev, A.V., Cercignani, C,, Gamba I.: On the self-similar asymptotics for generalized nonlinear kinetic Maxwell models. Comm. Math. Phys. 291(3), 599–644 (2009)
Cercignani, C.: The Boltzmann Equation and Its Applications. Springer Series in Applied Mathematical Sciences, vol. 67. Springer, New York (1988)
Chakraborti, A., Chakrabarti, B.K.: Statistical mechanics of money: effects of saving propensity. Eur. Phys. J. B 17, 167–170 (2000)
Chatterjee, A., Chakrabarti, B.K., Manna, S.S.: Pareto law in a kinetic model of market with random saving propensity. Physica A 335, 155–163 (2004)
Chatterjee, A., Chakrabarti, B.K., Stinchcombe, R.B.: Master equation for a kinetic model of trading market and its analytic solution. Phys. Rev. E 72, 026126 (2005)
Cordier, S., Pareschi, L., Toscani, G.: On a kinetic model for a simple market economy. J. Stat. Phys. 120, 253–277 (2005)
Crow, E.L., Shimizu, K. (eds.): Log-Normal Distributions: Theory and Application. Dekker, New York (1988)
Drǎgulescu, A., Yakovenko, V.M.: Statistical mechanics of money. Eur. Phys. J. B 17, 723–729 (2000)
Düring, B., Matthes, D., Toscani, G.: Kinetic equations modelling wealth redistribution: a comparison of approaches. Phys. Rev. E 78, 056103 (2008)
Düring, B., Matthes, D., Toscani, G.: A Boltzmann type approach to the formation of wealth distribution curves. Riv. Mat. Univ. Parma 8(1), 199–261 (2009)
Furioli, G., Pulvirenti, A., Terraneo, E., Toscani, G.: Fokker-Planck equations in the modelling of socio-economic phenomena. Math. Models Methods Appl. Sci. 27, 115–158 (2017)
Galton, F.: Natural Inheritance. McMillan, London (1894)
Gibrat, R.: Une loi des réparations économiques: l’éffet proportionnel. Bull. Statist. Gén. Fr. 19 469–513 (1930)
Gibrat, R.:Les inegalites économiques. Libraire du Recueil Sirey, Paris (1931)
Gualandi, S., Toscani, G.: Call center service times are lognormal. a Fokker–Planck description. Math. Models Methods Appl. Sci. 28(8), 1513–1527 (2018)
Gualandi, S., Toscani, G.: Human behavior and lognormal distribution. a kinetic description. Math. Models Methods Appl. Sci. 29(4), 717–753 (2019)
Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–292 (1979)
Kahneman, D., Tversky, A.: Choices, Values, and Frames. Cambridge University Press, Cambridge (2000)
Kapteyn, J.C.: Skew Frequency Curves in Biology and Statistics. Astronomical Laboratory, Groningen. Noordhoff, The Netherlands (1903)
Limpert, E., Stahel, W.A., Abbt, M.: Log-normal distributions across the sciences: keys and clues. BioScience 51(5), 341–352 (2001)
Matthes, D., Toscani, G.: On steady distributions of kinetic models of conservative economies. J. Stat. Phys. 130, 1087–1117 (2008)
Naldi, G., Pareschi, L, Toscani, G. (eds.): Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Birkhauser, Boston (2010)
Pareschi, L, Toscani, G.: Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods. Oxford University Press, Oxford (2014)
Preziosi, L., Toscani, G., Zanella, M.: Control of tumor growth distributions through kinetic methods. J. Theor. Biol. 514, 110579 (2021)
Toscani, G.: Kinetic and mean field description of Gibrat’s law. Physica A 461, 802–811 (2016)
Toscani, G., Tosin, A., Zanella, M.: Multiple-interaction kinetic modeling of a virtual-item gambling economy. Phys. Rev. E 100, 012308 (2019)
Villani, C.: Contribution à l’étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas. PhD Thesis, Univ. Paris-Dauphine (1998)
Acknowledgements
This work has been written within the activities of GNFM group of INdAM (National Institute of High Mathematics), and partially supported by the Italian Ministry of Education, University, and Research (MIUR): Dipartimenti di Eccellenza Program (2018–2022) - Dept. of Mathematics “F. Casorati,” University of Pavia. The editors of the volume, who gave to the author the possibility to remember the work of the notable figure of Carlo Cercignani, whose scientific results have been seminal for his research, are kindly acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Toscani, G. (2023). A Multi-Agent Description of Social Phenomena with Lognormal Equilibria. In: Barbante, P., Belgiorno, F.D., Lorenzani, S., Valdettaro, L. (eds) From Kinetic Theory to Turbulence Modeling. INdAM 2021. Springer INdAM Series, vol 51. Springer, Singapore. https://doi.org/10.1007/978-981-19-6462-6_20
Download citation
DOI: https://doi.org/10.1007/978-981-19-6462-6_20
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-6461-9
Online ISBN: 978-981-19-6462-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)