Skip to main content

A Multi-Agent Description of Social Phenomena with Lognormal Equilibria

  • Conference paper
  • First Online:
From Kinetic Theory to Turbulence Modeling (INdAM 2021)

Part of the book series: Springer INdAM Series ((SINDAMS,volume 51))

  • 338 Accesses

Abstract

The lognormal distribution, very common in physical and biological applications, also appears in various phenomena related to economic and social activities. In socio-economics these phenomena describe in most cases the evolution in time of the distribution of a certain attribute of agents, which aim to reach a desired target by repeated attempts. By resorting to the analogies of these problems with the classical kinetic theory of rarefied gases, we aim to illustrate the nature of the microscopic interactions which give rise to a macroscopic lognormal distribution profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aitchison, J., Brown, J.A.C.: The Log-Normal Distribution. Cambridge University Press, Cambridge (1957)

    Google Scholar 

  2. Bobylev, A.V., Cercignani, C,, Gamba I.: On the self-similar asymptotics for generalized nonlinear kinetic Maxwell models. Comm. Math. Phys. 291(3), 599–644 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer Series in Applied Mathematical Sciences, vol. 67. Springer, New York (1988)

    Google Scholar 

  4. Chakraborti, A., Chakrabarti, B.K.: Statistical mechanics of money: effects of saving propensity. Eur. Phys. J. B 17, 167–170 (2000)

    Article  Google Scholar 

  5. Chatterjee, A., Chakrabarti, B.K., Manna, S.S.: Pareto law in a kinetic model of market with random saving propensity. Physica A 335, 155–163 (2004)

    Article  MathSciNet  Google Scholar 

  6. Chatterjee, A., Chakrabarti, B.K., Stinchcombe, R.B.: Master equation for a kinetic model of trading market and its analytic solution. Phys. Rev. E 72, 026126 (2005)

    Article  Google Scholar 

  7. Cordier, S., Pareschi, L., Toscani, G.: On a kinetic model for a simple market economy. J. Stat. Phys. 120, 253–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crow, E.L., Shimizu, K. (eds.): Log-Normal Distributions: Theory and Application. Dekker, New York (1988)

    Google Scholar 

  9. Drǎgulescu, A., Yakovenko, V.M.: Statistical mechanics of money. Eur. Phys. J. B 17, 723–729 (2000)

    Google Scholar 

  10. Düring, B., Matthes, D., Toscani, G.: Kinetic equations modelling wealth redistribution: a comparison of approaches. Phys. Rev. E 78, 056103 (2008)

    Article  MathSciNet  Google Scholar 

  11. Düring, B., Matthes, D., Toscani, G.: A Boltzmann type approach to the formation of wealth distribution curves. Riv. Mat. Univ. Parma 8(1), 199–261 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Furioli, G., Pulvirenti, A., Terraneo, E., Toscani, G.: Fokker-Planck equations in the modelling of socio-economic phenomena. Math. Models Methods Appl. Sci. 27, 115–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galton, F.: Natural Inheritance. McMillan, London (1894)

    Google Scholar 

  14. Gibrat, R.: Une loi des réparations économiques: l’éffet proportionnel. Bull. Statist. Gén. Fr. 19 469–513 (1930)

    Google Scholar 

  15. Gibrat, R.:Les inegalites économiques. Libraire du Recueil Sirey, Paris (1931)

    Google Scholar 

  16. Gualandi, S., Toscani, G.: Call center service times are lognormal. a Fokker–Planck description. Math. Models Methods Appl. Sci. 28(8), 1513–1527 (2018)

    Google Scholar 

  17. Gualandi, S., Toscani, G.: Human behavior and lognormal distribution. a kinetic description. Math. Models Methods Appl. Sci. 29(4), 717–753 (2019)

    Google Scholar 

  18. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–292 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kahneman, D., Tversky, A.: Choices, Values, and Frames. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  20. Kapteyn, J.C.: Skew Frequency Curves in Biology and Statistics. Astronomical Laboratory, Groningen. Noordhoff, The Netherlands (1903)

    Google Scholar 

  21. Limpert, E., Stahel, W.A., Abbt, M.: Log-normal distributions across the sciences: keys and clues. BioScience 51(5), 341–352 (2001)

    Article  Google Scholar 

  22. Matthes, D., Toscani, G.: On steady distributions of kinetic models of conservative economies. J. Stat. Phys. 130, 1087–1117 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Naldi, G., Pareschi, L, Toscani, G. (eds.): Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Birkhauser, Boston (2010)

    Google Scholar 

  24. Pareschi, L, Toscani, G.: Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods. Oxford University Press, Oxford (2014)

    MATH  Google Scholar 

  25. Preziosi, L., Toscani, G., Zanella, M.: Control of tumor growth distributions through kinetic methods. J. Theor. Biol. 514, 110579 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Toscani, G.: Kinetic and mean field description of Gibrat’s law. Physica A 461, 802–811 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Toscani, G., Tosin, A., Zanella, M.: Multiple-interaction kinetic modeling of a virtual-item gambling economy. Phys. Rev. E 100, 012308 (2019)

    Article  Google Scholar 

  28. Villani, C.: Contribution à l’étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas. PhD Thesis, Univ. Paris-Dauphine (1998)

    Google Scholar 

Download references

Acknowledgements

This work has been written within the activities of GNFM group of INdAM (National Institute of High Mathematics), and partially supported by the Italian Ministry of Education, University, and Research (MIUR): Dipartimenti di Eccellenza Program (2018–2022) - Dept. of Mathematics “F. Casorati,” University of Pavia. The editors of the volume, who gave to the author the possibility to remember the work of the notable figure of Carlo Cercignani, whose scientific results have been seminal for his research, are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Toscani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toscani, G. (2023). A Multi-Agent Description of Social Phenomena with Lognormal Equilibria. In: Barbante, P., Belgiorno, F.D., Lorenzani, S., Valdettaro, L. (eds) From Kinetic Theory to Turbulence Modeling. INdAM 2021. Springer INdAM Series, vol 51. Springer, Singapore. https://doi.org/10.1007/978-981-19-6462-6_20

Download citation

Publish with us

Policies and ethics