Skip to main content

Challenges and Prospects of Tackling Food Loss and Wastes in the Circular Economy Context

  • Chapter
  • First Online:
Sustainable Food Value Chain Development

Abstract

In the present-day global consequences, sustainable utilization of agri-food industries generated wastes and by-products to produce value-added products assumes prime importance. One of the key features on which the concept of the circular economy relies is on maximal utilization of agricultural resources with minimal wastes/by-products being generated through the entire production and supply chain. The circular economy is the continual use of resources in a sustainable way and is considered to be an efficient substitute for the linear economy model. Modern-day technological innovations are aimed towards meeting the requirements of the local industry and government, stakeholders, developing appropriate business models,  policy formulations, and accomplishing societal needs/demands that can significantly contribute towards the success of the circular economy. In this view, the present chapter proposes various sustainable approaches that can be adopted to ensure the effective valorization of wastes and by-products generated throughout the agri-food supply chain. Novel methods to tackle food loss and/or food waste in relevance to the circular economy (bioeconomy) context are deliberated (specifically taking into consideration the EU context and high-income-generating countries and compared with low- and middle-income-generating countries). Further, in the context of the United Nations Sustainable Development Goals (SDGs), this chapter theme addresses predominantly SDG 12 (Responsible Consumption and Production). Vital features covered in this chapter revolve around proposing innovative means for minimizing loss/wastes at the “on-farm” and “off-farm” levels as well as maximal utilization of agri-food industrial by-products (mainly obtained from the fruits, vegetables, and dairy processing industries). Conclusively, it is opined that tackling food loss and waste coupled with valorization technologies and a green approach can provide plenty of opportunities and stability aimed towards realizing the success of circular bioeconomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achilonu, M., Shale, K., Arthur, G., Naidoo, K., & Mbatha, M. (2018). Phytochemical benefits of agro-residues as alternative nutritive dietary resource for pig and poultry farming. Journal of Chemistry. https://doi.org/10.1155/2018/1035071

    Article  Google Scholar 

  • Aditya, S., Ohh, S. J., Ahammed, M., & Lohakare, J. (2018). Supplementation of grape pomace (Vitis vinifera) in broiler diets and its effect on growth performance, apparent total tract digestibility of nutrients, blood profile, and meat quality. Animal Nutrition, 4(2), 210–214.

    Article  Google Scholar 

  • Aghili, A. H., Toghyani, M., & Tabeidian, S. A. (2019). Effect of incremental levels of apple pomace and multi-enzyme on performance, immune response, gut development and blood biochemical parameters of broiler chickens. International Journal of Recycling of Organic Waste in Agriculture, 8(1), 321–334.

    Article  Google Scholar 

  • Audic, J. L., Chaufer, B., & Daufin, G. (2003). Non-food applications of milk components and dairy co-products: A review. Le Lait, 83(6), 417–438.

    Article  Google Scholar 

  • Bakshi, M. P. S., Wadhwa, M., & Makkar, H. P. (2016). Waste to worth: Vegetable wastes as animal feed. CABI Reviews, 11(012), 1–26.

    Article  Google Scholar 

  • Banerjee, J., Singh, R., Vijayaraghavan, R., MacFarlane, D., Patti, A. F., & Arora, A. (2017). Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry, 225, 10–22.

    Article  Google Scholar 

  • Bas-Bellver, C., Barrera, C., Betoret, N., & Seguí, L. (2020). Turning agri-food cooperative vegetable residues into functional powdered ingredients for the food industry. Sustainability, 12(4), 1284.

    Google Scholar 

  • Bayer, I. S., Guzman-Puyol, S., Heredia-Guerrero, J. A., Ceseracciu, L., Pignatelli, F., Ruffilli, R., & Athanassiou, A. (2014). Direct transformation of edible vegetable waste into bioplastics. Macromolecules, 47(15), 5135–5143.

    Article  Google Scholar 

  • Bengtsson, S., Pisco, A. R., Johansson, P., Lemos, P. C., & Reis, M. A. (2010). Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures. Journal of Biotechnology, 147(3–4), 172–179.

    Article  Google Scholar 

  • Ben-Othman, S., Jõudu, I., & Bhat, R. (2020). Bioactives from agri-food wastes: Present insights and future challenges. Molecules, 25(3), 510. https://doi.org/10.3390/molecules25030510

    Article  Google Scholar 

  • Benvenutti, L., Bortolini, D. G., Nogueira, A., Zielinski, A. A. F., & Alberti, A. (2019). Effect of addition of phenolic compounds recovered from apple pomace on cider quality. LWT- Food Science & Technology, 100, 348–354.

    Article  Google Scholar 

  • Bilal, M., & Iqbal, H. M. (2019). Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities–A review. Food Research International, 123, 226–240.

    Article  Google Scholar 

  • Boukroufa, M., Boutekedjiret, C., Petigny, L., Rakotomanomana, N., & Chemat, F. (2015). Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrasonics Sonochemistry, 24, 72–79.

    Article  Google Scholar 

  • Bustamante, J., van Stempvoort, S., García-Gallarreta, M., Houghton, J. A., Briers, H. K., Budarin, V. L., & Clark, J. H. (2016). Microwave assisted hydro-distillation of essential oils from wet citrus peel waste. Journal of Cleaner production, 137, 598–605.

    Google Scholar 

  • Čanadanović-Brunet, J. M., Savatović, S. S., Ćetković, G. S., Vulić, J. J., Djilas, S. M., Markov, S. L., Cvetković, D. D. (2011). Antioxidant and antimicrobial activities of beet root pomace extracts. Czech Journal of Food Sciences, 29(6), 575–585.

    Google Scholar 

  • Cesário, M. T., Raposo, R. S., de Almeida, M. C. M., van Keulen, F., Ferreira, B. S., & da Fonseca, M. M. R. (2014a). Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnology, 31(1), 104–113.

    Article  Google Scholar 

  • Cesário, M. T., Raposo, R. S., de Almeida, M. C. M., Van Keulen, F., Ferreira, B. S., Telo, J. P., & da Fonseca, M. M. R. (2014b). Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by Burkholderia sacchari using wheat straw hydrolysates and gamma-butyrolactone. International Journal of Biological Macromolecules, 71, 59–67.

    Article  Google Scholar 

  • Chakraborty, K., Saha, S. K., Raychaudhuri, U., & Chakraborty, R. (2018). Vinegar production from vegetable waste: Optimization of physical condition and kinetic modeling of fermentation process. Indian Journal of Chemical Technology (IJCT), 24(5), 508–516.

    Google Scholar 

  • Chedea, V. S., Kefalas, P., & Socaciu, C. (2010). Patterns of carotenoid pigments extracted from two orange peel wastes (Valencia and Navel var.). Journal of Food Biochemistry, 34(1), 101–110.

    Google Scholar 

  • Chhouk, K., Uemori, C., Kanda, H., & Goto, M. (2017). Extraction of phenolic compounds and antioxidant activity from garlic husk using carbon dioxide expanded ethanol. Chemical Engineering and Processing: Process Intensification, 117, 113–119.

    Article  Google Scholar 

  • Chitturi, S., Gopichand, V., & Vuppu, S. (2013). Studies on protein content, protease activity, antioxidants potential, melanin composition, glucosinolate and pectin constitution with brief statistical analysis in some medicinally significant fruit peels. Der Pharmacia Lettre, 5(1), 13–23.

    Google Scholar 

  • Choi, I. S., Cho, E. J., Moon, J. H., & Bae, H. J. (2015). Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food Chemistry, 188, 537–542.

    Article  Google Scholar 

  • Christiaens, S., Uwibambe, D., Uyttebroek, M., Van Droogenbroeck, B., Van Loey, A. M., & Hendrickx, M. E. (2015). Pectin characterisation in vegetable waste streams: A starting point for waste valorisation in the food industry. LWT-Food Science and Technology, 61(2), 275–282.

    Article  Google Scholar 

  • Clemente, R., Pardo, T., Madejón, P., Madejón, E., & Bernal, M. P. (2015). Food byproducts as amendments in trace elements contaminated soils. Food Research International, 73, 176–189.

    Article  Google Scholar 

  • Clementz, A., Torresi, P. A., Molli, J. S., Cardell, D., Mammarella, E., & Yori, J. C. (2019). Novel method for valorization of by-products from carrot discards. LWT, 100, 374–380.

    Article  Google Scholar 

  • Colombo, B., Sciarria, T. P., Reis, M., Scaglia, B., & Adani, F. (2016). Polyhydroxyalkanoates (PHAs) production from fermented cheese whey by using a mixed microbial culture. Bioresource Technology, 218, 692–699.

    Article  Google Scholar 

  • Coman, V., Teleky, B. E., Mitrea, L., Martău, G. A., Szabo, K., Călinoiu, L. F., & Vodnar, D. C. (2019). Bioactive potential of fruit and vegetable wastes. In Advances in food and nutrition research (Vol. 91, pp. 157–225). Academic Press.

    Google Scholar 

  • Correddu, F., Lunesu, M. F., Buffa, G., Atzori, A. S., Nudda, A., Battacone, G., & Pulina, G. (2020). Can agro-industrial by-products rich in polyphenols be advantageously used in the feeding and nutrition of dairy small ruminants? Animals, 10(1), 131.

    Article  Google Scholar 

  • Dabbou, S., Ferrocino, I., Kovitvadhi, A., Bergagna, S., Dezzuto, D., Schiavone, A., & Gasco, L. (2019). Bilberry pomace in rabbit nutrition: effects on growth performance, apparent digestibility, caecal traits, bacterial community and antioxidant status. Animal: An International Journal of Animal Bioscience, 13(1), 53–63.

    Google Scholar 

  • de Azevedo, P. O. D. S., Aliakbarian, B., Casazza, A. A., LeBlanc, J. G., Perego, P., & de Souza Oliveira, R. P. (2018). Production of fermented skim milk supplemented with different grape pomace extracts: Effect on viability and acidification performance of probiotic cultures. Pharma Nutrition, 6(2), 64–68.

    Article  Google Scholar 

  • De Wit, J. N. (1990). Thermal stability and functionality of whey proteins. Journal of Dairy Science, 73(12), 3602–3612.

    Article  Google Scholar 

  • Demirbas, A. (2011). Waste management, waste resource facilities and waste conversion processes. Energy Conversion and Management, 52(2), 1280–1287.

    Article  Google Scholar 

  • Donno, D., Mellano, M. G., Cerutti, A. K., & Beccaro, G. L. (2018). Nutraceuticals in alternative and underutilized fruits as functional food ingredients: Ancient species for new health needs. In Alternative and replacement foods (pp. 261–282). Academic Press.

    Google Scholar 

  • Elain, A., Le Grand, A., Corre, Y. M., Le Fellic, M., Hachet, N., Le Tilly, V., & Bruzaud, S. (2016). Valorisation of local agro-industrial processing waters as growth media for polyhydroxyalkanoates (PHA) production. Industrial Crops and Products, 80, 1–5.

    Article  Google Scholar 

  • ElMekawy, A., Srikanth, S., Bajracharya, S., Hegab, H. M., Nigam, P. S., Singh, A., & Pant, D. (2015). Food and agricultural wastes as substrates for bioelectrochemical system (BES): The synchronized recovery of sustainable energy and waste treatment. Food Research International, 73, 213–225.

    Article  Google Scholar 

  • Encalada, A. M. I., Pérez, C. D., Flores, S. K., Rossetti, L., Fissore, E. N., & Rojas, A. M. (2019). Antioxidant pectin enriched fractions obtained from discarded carrots (Daucus carota L.) by ultrasound-enzyme assisted extraction. Food Chemistry, 289, 453–460.

    Article  Google Scholar 

  • European Bioplastics. (2020). Bioplastics market data 2019. Available online: https://docs.europeanbioplastics.org/publications/market_data/Report_Bioplastics_Market_Data_2019.pdf. Accessed on 24 Sept 2020.

  • European Commission. (2020a). Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions: A farm to fork strategy for a fair, healthy and environmentally-friendly food system; COM (2020a) 381 Final from 20.05.2020a; European Commission: Brussels, Belgium, 2020a.

    Google Scholar 

  • European Commission (2020b). EU platform on food losses and food waste. Available online:https://ec.europa.eu/food/safety/food_waste/eu_actions/eu-platform_en. Accessed on 3 March 2021.

  • Fabi, C., Cachia, F., Conforti, P., English, A., & Moncayo, J. R. (2020). Improving data on food losses and waste: From theory to practice. Food Policy. https://doi.org/10.1016/j.foodpol.2020.101934

    Article  Google Scholar 

  • Fang, J., Cao, Y., Matsuzaki, M., & Suzuki, H. (2016). Effects of apple pomace proportion levels on the fermentation quality of total mixed ration silage and its digestibility, preference and ruminal fermentation in beef cows. Animal Science Journal, 87(2), 217–223.

    Article  Google Scholar 

  • FAO (2009). Agribusiness handbook: Milk/dairy products. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.

    Google Scholar 

  • FAO. (2013). Food and agriculture organization of the United Nations (FAO). Food Wastage Footprint: Impacts on Natural Resources; Summary Report. FAO.

    Google Scholar 

  • FAO. (2014). Food losses and waste in the context of sustainable food systems. A report by the high level panel of experts on food security and nutrition. http://www.fao.org/3/a-i3901e.pdf. Access date 06 March 2021.

  • Farhat, A., Fabiano-Tixier, A. S., El Maataoui, M., Maingonnat, J. F., Romdhane, M., & Chemat, F. (2011). Microwave steam diffusion for extraction of essential oil from orange peel: kinetic data, extract’s global yield and mechanism. Food Chemistry, 125(1), 255–261.

    Google Scholar 

  • Faustino, M., Veiga, M., Sousa, P., Costa, E. M., Silva, S., & Pintado, M. (2019). Agro-food byproducts as a new source of natural food additives. Molecules, 24(6), 1056. https://doi.org/10.3390/molecules24061056

    Article  Google Scholar 

  • Fusions. (2016). http://www.eufusions.org/phocadownload/Publications/Estimates%20of%20European%20food%20waste%20levels.pdf. Access date: 03 March 2021.

  • Galanakis, C. M. (2012). Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology, 26(2), 68–87.

    Article  Google Scholar 

  • Garcia-Mendoza, M. P., Paula, J. T., Paviani, L. C., Cabral, F. A., & Martinez-Correa, H. A. (2015). Extracts from mango peel by-product obtained by supercritical CO2 and pressurized solvent processes. LWT-Food Science and Technology, 62(1), 131–137.

    Article  Google Scholar 

  • Gengatharan, A., Dykes, G. A., & Choo, W. S. (2015). Betalains: Natural plant pigments with potential application in functional foods. LWT-Food Science and Technology, 64(2), 645–649.

    Article  Google Scholar 

  • Ghosh, P. R., Fawcett, D., Sharma, S. B., & Poinern, G. E. J. (2016). Progress towards sustainable utilisation and management of food wastes in the global economy. International Journal of Food Science, 1–22.

    Google Scholar 

  • Górnaś, P., & Rudzińska, M. (2016). Seeds recovered from industry by-products of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Industrial Crops and Products, 83, 329–338.

    Article  Google Scholar 

  • Grioui, N., Slimen, I. B., Riahi, H., Najar, T., Abderrabba, M., & Mejri, M. (2019). Influence of dried tomato pomace as a source of polyphenols on the performance of growing rabbit. Animal Nutrition and Feed Technology, 19(3), 493–501.

    Article  Google Scholar 

  • Guimarães, P. M., Teixeira, J. A., & Domingues, L. (2010). Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnology Advances, 28(3), 375–384.

    Article  Google Scholar 

  • Gunes, R., Palabiyik, I., Toker, O. S., Konar, N., & Kurultay, S. (2019). Incorporation of defatted apple seeds in chewing gum system and phloridzin dissolution kinetics. Journal of Food Engineering, 255, 9–14.

    Article  Google Scholar 

  • Halmemies-Beauchet-Filleau, A., Rinne, M., Lamminen, M., Mapato, C., Ampapon, T., Wanapat, M., & Vanhatalo, A. (2018). Alternative and novel feeds for ruminants: Nutritive value, product quality and environmental aspects. Animal, 12(s2), s295–s309.

    Article  Google Scholar 

  • Hao, X., Diao, X., Yu, S., Ding, N., Mu, C., Zhao, J., & Zhang, J. (2018). Nutrient digestibility, rumen microbial protein synthesis, and growth performance in sheep consuming rations containing sea buckthorn pomace. Journal of Animal Science, 96(8), 3412–3419.

    Article  Google Scholar 

  • Hassan, H. F., Hassan, U. F., Usher, O. A., Ibrahim, A. B., & Tabe, N. N. (2018). Exploring the potentials of banana (Musa Sapietum) peels in feed formulation. International Journal of Advanced Research in Chemical Science, 5, 10–14.

    Google Scholar 

  • Hernández-Ledesma, B., del Mar Contreras, M., & Recio, I. (2011). Antihypertensive peptides: Production, bioavailability and incorporation into foods. Advances in Colloid and Interface Science, 165(1), 23–35.

    Article  Google Scholar 

  • Hussain, S., Jõudu, I., & Bhat, R. (2020). Dietary fiber from underutilized plant resources-a positive approach for valorization of fruit and vegetable wastes. Sustainability, 12(13), 5401.

    Article  Google Scholar 

  • Jiang, G., Lin, S., Wen, L., Jiang, Y., Zhao, M., Chen, F., Prasad, K. N., Duan, X., & Yang, B. (2013). Identification of a novel phenolic compound in litchi (Litchi chinensis Sonn.) pericarp and bioactivity evaluation. Food Chemistry, 136, 563–568.

    Article  Google Scholar 

  • Jõgi, K., & Bhat, R. (2020). Valorization of agri-food wastes for bioplastics production. Sustainable Chemistry and Pharmacy, 18, 100326. https://doi.org/10.1016/j.scp.2020.100326

    Article  Google Scholar 

  • Kallel, F., Driss, D., Chaari, F., Belghith, L., Bouaziz, F., Ghorbel, R., et al. (2014). Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Industrial Crops and Products, 62, 34–41.

    Article  Google Scholar 

  • Kara, K., & Güçlü, B. K. (2012). The effects of different molting methods and supplementation of grape pomace to the diet of molted hens on postmolt performance, egg quality and peroxidation of egg lipids. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 9(3), 183–196.

    Google Scholar 

  • Kasapidou, E., Sossidou, E., & Mitlianga, P. (2015). Fruit and vegetable co-products as functional feed ingredients in farm animal nutrition for improved product quality. Agriculture, 5(4), 1020–1034.

    Article  Google Scholar 

  • Knorr, D., Dumont, M.-J., Del Rio, L. F., & Orsat, V. (2017). Producing PHAs in the bioeconomy: Towards a sustainable bioplastic. Sustainable Production and Consumption, 9, 58–70. https://doi.org/10.1016/j.spc.2016.09.001

    Article  Google Scholar 

  • Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2), 177–187.

    Article  Google Scholar 

  • Kowalska, H., Czajkowska, K., Cichowska, J., & Lenart, A. (2017). What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science & Technology, 67, 150–159.

    Article  Google Scholar 

  • Kushwaha, R., Kumar, V., Vyas, G., & Kaur, J. (2018). Optimization of different variable for eco-friendly extraction of betalains and phytochemicals from beetroot pomace. Waste and Biomass Valorization, 9(9), 1485–1494.

    Article  Google Scholar 

  • Lavecchia, R., & Zuorro, A. (2008). Process for the extraction of lycopene. World Intellectual Property Organization. WO/2008/055894.

    Google Scholar 

  • Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B., Abderrahim, S., Clark, J. H., & Luque, R. (2013). Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy & Environmental Science, 6(2), 426–464.

    Google Scholar 

  • López-Cobo, A., Gómez-Caravaca, A. M., Pasini, F., Caboni, M. F., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2016). HPLC-DAD-ESI-QTOF-MS and HPLC-FLD-MS as valuable tools for the determination of phenolic and other polar compounds in the edible part and by-products of avocado. LWT-Food Science and Technology, 73, 505–513.

    Google Scholar 

  • Madhav, A., & Pushpalatha, P. B. (2006). Quality upgradation of jellies prepared using pectin extracted from fruit wastes. Journal of Tropical Agriculture, 40, 31–34.

    Google Scholar 

  • Majerska, J., Michalska, A., & Figiel, A. (2019). A review of new directions in managing fruit and vegetable processing by-products. Trends in Food Science & Technology, 88, 207–219.

    Article  Google Scholar 

  • Malenica, D., & Bhat, R. (2020). Current research trends in fruit and vegetables wastes and by-products management-Scope and opportunities in the Estonian context. Agronomy Research, 18(3), 1760–1795.

    Google Scholar 

  • Manso, T., Gallardo, B., Salvá, A., Guerra-Rivas, C., Mantecón, A. R., Lavín, P., & De la Fuente, M. A. (2016). Influence of dietary grape pomace combined with linseed oil on fatty acid profile and milk composition. Journal of Dairy Science, 99(2), 1111–1120.

    Article  Google Scholar 

  • Masmoudi, M., Besbes, S., Chaabouni, M., Robert, C., Paquot, M., Blecker, C., & Attia, H. (2008). Optimization of pectin extraction from lemon by-product with acidified date juice using response surface methodology. Carbohydrate Polymers, 74(2), 185–192.

    Article  Google Scholar 

  • Mirzaei-Aghsaghali, A., & Maheri-Sis, N. (2008). Nutritive value of some agro-industrial by-products for ruminants-A review. World Journal Zoology, 3(2), 40–46.

    Google Scholar 

  • Mohanty, D. P., Mohapatra, S., Misra, S., & Sahu, P. S. (2016). Milk derived bioactive peptides and their impact on human health: A review. Saudi Journal of Biological Sciences, 23(5), 577–583.

    Article  Google Scholar 

  • Musayeva, K., Sederevičius, A., Monkevičienė, I., Baltušnikienė, A., Černauskienė, J., Kerzienė, S., & Želvytė, R. (2016). The Influence of feeding rapeseed pomace and extruded full fat soybean on the fatty acid profile in cow’s milk. Veterinarija ir zootechnika. Kaunas: Lietuvos sveikatos mokslų universiteto Veterinarijos akademija, 73(95), 69–72.

    Google Scholar 

  • Mushtaq, M., Sharma, V. K., Daisy, R., & Sharma, A. (2017). Effect of dietary replacement of protein with seabuckthorn products alone and in combination on the performance of broiler birds. Journal of Animal Feed Science and Technology, 5, 61–64.

    Google Scholar 

  • Nguyen, V. T., & Scarlett, C. J. (2016). Mass proportion, bioactive compounds and antioxidant capacity of carrot peel as affected by various solvents. Technologies, 4(4), 36.

    Article  Google Scholar 

  • Norgren, M., & Edlund, H. (2014). Lignin: Recent advances and emerging applications. Current Opinion in Colloid & Interface Science, 19(5), 409–416.

    Article  Google Scholar 

  • Nuernberg, K., Nuernberg, G., Priepke, A., & Dannenberger, D. (2015). Sea buckthorn pomace supplementation in the finishing diets of pigs–are there effects on meat quality and muscle fatty acids? Archives Animal Breeding, 58(1), 107–113.

    Article  Google Scholar 

  • Orczewska-Dudek, S., Pietras, M., & Nowak, J. (2018). The effect of amaranth seeds, sea buckthorn pomace and black chokeberry pomace in feed mixtures for broiler chickens on productive performance, carcass characteristics and selected indicators of meat quality. Annals of Animal Science, 18(2), 501–523.

    Google Scholar 

  • de Paula, F. C., de Paula, C. B., & Contiero, J. (2018). Prospective biodegradable plastics from biomass conversion processes. Biofuels: state of development, 245–271.

    Google Scholar 

  • Perussello, C. A., Zhang, Z., Marzocchella, A., & Tiwari, B. K. (2017). Valorization of apple pomace by extraction of valuable compounds. Comprehensive Reviews in Food Science and Food Safety, 16(5), 776–796.

    Article  Google Scholar 

  • Pinelo, M., Arnous, A., & Meyer, A. S. (2006). Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends in Food Science & Technology, 17(11), 579–590.

    Article  Google Scholar 

  • Plastics Europe. (2020). Market data. Available online: https://www.plasticseurope.org/en/resources/market-data. Accessed on 24 Sept 2020

  • Plazzotta, S., Manzocco, L., & Nicoli, M. C. (2017). Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends in Food Science & Technology, 63, 51–59. https://doi.org/10.1016/j.tifs.2017.02.013

    Article  Google Scholar 

  • Plazzotta, S., & Manzocco, L. (2019). Food waste valorization. Saving Food, 279–313.

    Google Scholar 

  • Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: A review. Journal of Environmental Management, 110, 48–68.

    Article  Google Scholar 

  • Ramos, O. L., Fernandes, J. C., Silva, S. I., Pintado, M. E., & Malcata, F. X. (2012). Edible films and coatings from whey proteins: A review on formulation, and on mechanical and bioactive properties. Critical Reviews in Food Science and Nutrition, 52(6), 533–552.

    Article  Google Scholar 

  • Rodriguez-Amaya, D. B. (2016). Natural food pigments and colorants. Current Opinion in Food Science, 7, 20–26.

    Article  Google Scholar 

  • Rotta, E. M., de Morais, D. R., Biondo, P. B. F., dos Santos, V. J., Matsushita, M., Visentainer, J. V. (2016). Use of avocado peel (Persea americana) in tea formulation: A functional product containing phenolic compounds with antioxidant activity. Acta Scientiarum—Technology, 38(1), 23–29. https://doi.org/10.4025/actascitechnol.v38i1.27397

  • Roversi, T., Ferrante, A., & Piazza, L. (2016). Mesoscale investigation of the structural properties of unrefined cell wall materials extracted from minimally processed salads during storage. Journal of Food Engineering, 168, 191–198.

    Article  Google Scholar 

  • Ryder, K., Ali, M. A., Carne, A., & Billakanti, J. (2017). The potential use of dairy by-products for the production of nonfood biomaterials. Critical Reviews in Environmental Science and Technology, 47(8), 621–642.

    Article  Google Scholar 

  • Saavedra, J., Córdova, A., Navarro, R., Díaz-Calderón, P., Fuentealba, C., Astudillo-Castro, C., & Galvez, L. (2017). Industrial avocado waste: Functional compounds preservation by convective drying process. Journal of Food Engineering, 198, 81–90.

    Google Scholar 

  • Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512–531.

    Article  Google Scholar 

  • San Martin, D., Ramos, S., & Zufía, J. (2016). Valorisation of food waste to produce new raw materials for animal feed. Food Chemistry, 198, 68–74.

    Article  Google Scholar 

  • Sancho, S. O., da Silva, A. R. A., & de Sousa Dantas, A. N., et al. (2015) Characterization of the industrial residues of seven fruits and prospection of their potential application as food supplements. Journal of Chemistry. https://doi.org/10.1155/2015/264284

  • Saponjac, V. T., Canadanovic, J., Cetkovic, G., Jakisˇic, M., Djilas, S., Vulic, J., et al. (2016). Encapsulation of beetroot pomace extract: RSM optimization, storage and gastrointestinal stability. Molecules, 21(5), 584. https://doi.org/10.3390/molecules21050584

    Article  Google Scholar 

  • Saqib, N. U., Sharma, H. B., Baroutian, S., Dubey, B., & Sarmah, A. K. (2019). Valorisation of food waste via hydrothermal carbonisation and techno-economic feasibility assessment. Science of the Total Environment, 690, 261–276.

    Article  Google Scholar 

  • Saraç, M. G., & Dogan, M. (2016). Incorporation of dietary fiber concentrates from fruit and vegetable wastes in butter: Effects on physicochemical, textural, and sensory properties. European Food Research and Technology, 242(8), 1331–1342.

    Article  Google Scholar 

  • Sáyago-Ayerdi, S. G., Zamora-Gasga, V. M., & Venema, K. (2019). Prebiotic effect of predigested mango peel on gut microbiota assessed in a dynamic in vitro model of the human colon (TIM-2). Food Research International, 118, 89–95.

    Google Scholar 

  • Schneider, F. (2013). The evolution of food donation with respect to waste prevention. Waste Management, 33(3), 755–763.

    Article  Google Scholar 

  • Schulze, C., Juraschek, M., Herrmann, C., & Thiede, S. (2017). Energy analysis of bioplastics processing. Procedia CIRP, 61, 600–605.

    Article  Google Scholar 

  • Sharma, P. C., Tilakratne, B. M. K. S., & Gupta, A. (2010). Utilization of wild apricot kernel press cake for extraction of protein isolate. Journal of Food Science and Technology, 47(6), 682–685.

    Article  Google Scholar 

  • Sharma, M., Usmani, Z., Gupta, V. K., & Bhat, R. (2021). Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Critical Reviews in Biotechnology, 1–42.

    Google Scholar 

  • Shen, L., Worrell, E., & Patel, M. (2010). Present and future development in plastics from biomass. Biofuels, Bioproducts and Biorefining: Innovation for a Sustainable Economy, 4(1), 25–40.

    Article  Google Scholar 

  • Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., & Li, X. (2013). Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresource Technology, 144, 80–85.

    Article  Google Scholar 

  • Singh, S., Jain, S., Singh, S. P., & Singh, D. (2009). Quality changes in fruit jams from combinations of different fruit pulps. Journal of Food Processing and Preservation, 33, 41–57.

    Article  Google Scholar 

  • Skinner, R. C., Gigliotti, J. C., Ku, K. M., & Tou, J. C. (2018). A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutrition Reviews, 76(12), 893–909.

    Google Scholar 

  • Strati, I. F., & Oreopoulou, V. (2011). Effect of extraction parameters on the carotenoid recovery from tomato waste. International Journal of Food Science & Technology, 46(1), 23–29.

    Article  Google Scholar 

  • Tayengwa, T., & Mapiye, C. (2018). Citrus and winery wastes: Promising dietary supplements for sustainable ruminant animal nutrition, health, production, and meat quality. Sustainability, 10(10), 3718.

    Article  Google Scholar 

  • Tremocoldi, M. A., Rosalen, P. L., Franchin, M., Massarioli, A. P., Denny, C., Daiuto, É. R., & Alencar, S. M. D. (2018). Exploration of avocado by-products as natural sources of bioactive compounds. PLoS ONE, 13(2), e0192577.

    Article  Google Scholar 

  • Tsang, Y. F., Kumar, V., Samadar, P., Yang, Y., Lee, J., Ok, Y. S., & Jeon, Y. J. (2019). Production of bioplastic through food waste valorization. Environment International, 127, 625–644.

    Article  Google Scholar 

  • Usmani, Z., Sharma, M., Gupta, P., Karpichev, Y., Gathergood, N., Bhat, R., & Gupta, V. K. (2020a). Ionic liquid based pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresource Technology, 304, 123003. https://doi.org/10.1016/j.biortech.2020.123003

    Article  Google Scholar 

  • Usmani, Z., Sharma, M., Sudheer, S., Gupta, V. K., & Bhat, R. (2020b). Engineered microbes for pigment production using waste biomass. Current Genomics, 21(2), 80–95.

    Article  Google Scholar 

  • Valdez-Arjona, L. P., & Ramírez-Mella, M. (2019). Pumpkin waste as livestock feed: Impact on nutrition and animal health and on quality of meat, milk, and egg. Animals, 9(10), 769.

    Google Scholar 

  • Pham Van, D., Hoang, M. G., Pham Phu, S. T., & Fujiwara, T. (2018). Kinetics of carbon dioxide, methane and hydrolysis in co-digestion of food and vegetable wastes. Global Journal of Environmental Science and Management4(4), 401–412.

    Google Scholar 

  • Vodnar, D. C., Călinoiu, L. F., Dulf, F. V., Ştefănescu, B. E., Crişan, G., & Socaciu, C. (2017). Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chemistry, 231, 131–140.

    Article  Google Scholar 

  • Vulić, J. J., Ćebović, T. N., Čanadanović-Brunet, J. M., Ćetković, G. S., Čanadanović, V. M., Djilas, S. M., & Šaponjac, V. T. T. (2014). In vivo and in vitro antioxidant effects of beetroot pomace extracts. Journal of Functional Foods6, 168–175.

    Google Scholar 

  • Way, M. L., Jones, J. E., Swarts, N. D., & Dambergs, R. G. (2019). Phenolic content of apple juice for cider making as influenced by common pre-fermentation processes using two analytical methods. Beverages, 5(3), 53. https://doi.org/10.3390/beverages5030053

    Article  Google Scholar 

  • Wihodo, M., & Moraru, C. I. (2013). Physical and chemical methods used to enhance the structure and mechanical properties of protein films: A review. Journal of Food Engineering, 114(3), 292–302.

    Article  Google Scholar 

  • Yitbarek, M. B. (2019). Some Selected Vegetable and Fruit Wastes for Poultry Feed. Journal of Veterinary and Animal Research, 1(1), 1.

    Google Scholar 

  • Zahari, M. A. K. M., Ariffin, H., Mokhtar, M. N., Salihon, J., Shirai, Y., & Hassan, M. A. (2015). Case study for a palm biomass biorefinery utilizing renewable non-food sugars from oil palm frond for the production of poly (3-hydroxybutyrate) bioplastic. Journal of Cleaner Production, 87, 284–290.

    Article  Google Scholar 

  • Zhu, M., Huang, Y., Wang, Y., Shi, T., Zhang, L., Chen, Y., & Xie, M. (2019). Comparison of (poly) phenolic compounds and antioxidant properties of pomace extracts from kiwi and grape juice. Food Chemistry, 271, 425–432.

    Article  Google Scholar 

Download references

Acknowledgments

The theme of this chapter is connected with the ERA-Chair in VALORTECH project at Estonian University of Life Sciences, which has received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement No. 810630.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, R., Sharma, M., Rätsep, R., Malenica, D., Jõgi, K. (2023). Challenges and Prospects of Tackling Food Loss and Wastes in the Circular Economy Context. In: Narula, S.A., Raj, S.P. (eds) Sustainable Food Value Chain Development. Springer, Singapore. https://doi.org/10.1007/978-981-19-6454-1_2

Download citation

Publish with us

Policies and ethics