Skip to main content

Complex Shear Imaging Based on Signal Processing and Machine Learning Algorithms

  • Chapter
  • First Online:
Machine Learning and Mechanics Based Soft Computing Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1068))

  • 422 Accesses

Abstract

The mechanical property of the tissue can be used for medical diagnosis. In a study about shear wave elastography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bercoff, J., Criton, A., Bacrie, C.C., et al. (2008). ShearWave elastography a new real time imaging mode for assessing quantitatively soft tissue viscoelasticity. In Ultrasonics Symposium. IUS 2008 (pp. 321–324). IEEE.

    Google Scholar 

  2. Sarvazyan, A. P., Rudenko, O. V., Swanson, S. D., et al. (1998). Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound in Medicine and Biology, 24(9), 1419–1435.

    Article  Google Scholar 

  3. Gennisson, J. L., Deffieux, T., Fink, M., & Tanter, M. (2013). Ultrasound elastography: principles and techniques. Diagnostic and Interventional Imaging, 94(5), 487–495.

    Article  Google Scholar 

  4. Ferraioli, G., Parekh, P., Levitov, A. B., & Filice, C. (2014). Shear wave elastography for evaluation of liver fibrosis. Journal of Ultrasound in Medicine, 33(2), 197–203.

    Article  Google Scholar 

  5. John, B., Liexiang, F. (2014). Understanding ARFI and new elastography quantification technologies. Mountain View, CA: Siemens Medical Solutions.

    Google Scholar 

  6. Lee, J. E., et al. (2017). Non-invasive assessment of liver fibrosis with ElastPQ: comparison with transient elastography and serologic fibrosis marker tests, and correlation with liver pathology results. Ultrasound in Medicine and Biology, 43(11), 2515–2521.

    Article  Google Scholar 

  7. Chen, S., Fatemi, M., & Greenleaf, J. F. (2004). Quantifying elasticity and viscosity from measurement of shear wave speed dispersion. The Journal of the Acoustical Society of America, 115(6), 2781–2785.

    Article  Google Scholar 

  8. Zheng, Y., Chen, S., Tan, W., Kinnick, R., & Greenleaf, J. (2007). Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and Kalman filter. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, 54(2), 290–300.

    Article  Google Scholar 

  9. Liu, D., & Ebbini, E. S. (2008). Viscoelastic property measurement in thin tissue constructs using ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(2), 368–383.

    Article  Google Scholar 

  10. Michael F Insana, Claire Pellot-Barakat, Mallika Sridhar, and Karen K Lindfors, “Viscoelastic imaging of breast tumor microenvironment with ultrasound,” Journal of mammary gland biology and neoplasia, vol. 9, no. 4, pp. 393–404, 2004.

    Google Scholar 

  11. Yue Wang and Michael F Insana, “Viscoelastic properties of rodent mammary tumors using ultrasonic shear-wave imaging,” Ultrasonic Imaging, vol. 35, no. 2, pp. 126–145, 2013.

    Google Scholar 

  12. Matthew W Urban, Shigao Chen, and James F Greenleaf, “Error Estimates in Shear Wave Speed and Tissue Material Properties in Shear Wave Dispersion Ultrasound Vibrometry,” in Ultrasonics Symposium, 2007. IEEE, 2007, pp. 664–667.

    Google Scholar 

  13. Amador, C. (2015). Randall R Kinnick, Matthew W Urban, Mostafa Fatemi, and James F Greenleaf, “Viscoelastic tissue mimicking phantom validation study with shear wave elasticity imaging and viscoelastic spectroscopy,” in Ultrasonics Symposium (IUS). IEEE International, 2015, 1–4.

    Google Scholar 

  14. Findley, W. N., Lai, J. S., Onaran, K., & Christensen, R. M. (1977). Creep and relaxation of nonlinear viscoelastic materials with an introduction to linear viscoelasticity. Journal of Applied Mechanics, 44, 364.

    Article  Google Scholar 

  15. Marko Orescanin and Michael F Insana, “Shear modulus estimation with vibrating needle stimulation,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 6, pp. 1358–1367, 2010.

    Google Scholar 

  16. Jonathan Vappou, Caroline Maleke, and Elisa E Konofagou, “Quantitative viscoelastic parameters measured by harmonic motion imaging,” Physics in medicine and biology, vol. 54, no. 11, p. 3579, 2009.

    Google Scholar 

  17. Marko Orescanin and Michael F Insana, “Model-based complex shear modulus reconstruction: A Bayesian approach,” in IEEE Ultrasonics Symposium (IUS), 2010, pp. 61–64.

    Google Scholar 

  18. Tan Tran-Duc, Yue Wang, Nguyen Linh-Trung, Minh N Do, and Michael F Insana, “Complex Shear Modulus Estimation Using Maximum Likelihood Ensemble Filters,” in 4th International Conference on Biomedical Engineering in Vietnam, 2013, pp. 313–316.

    Google Scholar 

  19. Nguyen Thi Hao, Tran Thuy-Nga, Vu Dinh-Long, Tran Duc-Tan, and Nguyen Linh-Trung, “2D Shear Wave Imaging Using Maximum Likelihood Ensemble Filter,” in International Conference on Green and Human Information Technology (ICGHIT 2013), 2013, pp. 88–94.

    Google Scholar 

  20. Yo Kobayashi, Mariko Tsukune, Tomoyuki Miyashita, and Masakatsu G Fujie, “Simple empirical model for identifying rheological properties of soft biological tissues,” Physical Review E, vol. 95, no. 2, p. 022418, 2017.

    Google Scholar 

  21. Arif R Albayrak, Milija Zupanski, and Dusanka Zupanski, “Maximum likelihood ensemble filter applied to multisensor systems,” in Defense and Security Symposium, 2007, pp. 65710N-65718N.

    Google Scholar 

  22. Zupanski, M. (2005). Maximum likelihood ensemble filter: Theoretical aspects. Monthly Weather Review, 133(6), 1710–1726.

    Article  Google Scholar 

  23. Marko Orescanin, Yue Wang, and Michael F Insana, “3D FDTD simulation of shear waves for evaluation of complex modulus imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 58, no. 2, pp. 389–398, 2011.

    Google Scholar 

  24. Christoph T Schroder and Waymond R Scott, “A finite-difference model to study the elastic-wave interactions with buried land mines,” IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 4, pp. 1505–1512, 2000.

    Google Scholar 

  25. Simon Haykin and Bernard Widrow, Least-mean-square adaptive filters.: John Wiley & Sons, 2003.

    Google Scholar 

  26. Monson H. Hayes, Statistical digital signal processing and modeling.: John Wiley & Sons, 2009.

    Google Scholar 

  27. Bismor, D. (2012). LMS algorithm step size adjustment for fast convergence. Archives of Acoustics, 37(1), 31–40.

    Article  Google Scholar 

  28. Papazoglou, S., Hamhaber, U., Braun, J., & Sack, I. (2008). Algebraic Helmholtz inversion in planar magnetic resonance elastography. Physics in Medicine and Biology, 53(12), 3147.

    Article  Google Scholar 

  29. Budelli, E., Brum, J., Bernal, M., et al. (2017). A diffraction correction for storage and loss moduli imaging using radiation force based elastography. Physics in Medicine and Biology, 62(1), 91.

    Article  Google Scholar 

  30. Huwart, L., et al. (2006). Liver fibrosis: Non-invasive assessment with MR elastography. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo, 19(2), 173–179.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Foundation for Science & Technology Development (NAFOSTED) under Grant 103.05-2020.13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Tan Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tran, DT., Solanki, V.K. (2023). Complex Shear Imaging Based on Signal Processing and Machine Learning Algorithms. In: Nguyen, T.D.L., Lu, J. (eds) Machine Learning and Mechanics Based Soft Computing Applications. Studies in Computational Intelligence, vol 1068. Springer, Singapore. https://doi.org/10.1007/978-981-19-6450-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6450-3_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6449-7

  • Online ISBN: 978-981-19-6450-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics