Skip to main content

Gallbladder Cancer: Current Treatment Options and Therapeutics

  • Chapter
  • First Online:
Gallbladder Cancer

Abstract

Although rare, gallbladder cancer (GBC), a tumor of the biliary tract is characterized by high aggressiveness and invasiveness. Surgical resection of the tumor remains the most curative treatment approach; however, only a few number of gallbladder carcinoma patients are suitable for surgical resection of the tumor. Several novel therapeutic modalities have been established following the emergence of new technology, such as immunotherapy, targeted therapy, and medication delivery systems comprised of nanoparticles. In the current chapter, we consider various aspects of gallbladder carcinoma and current treatment approaches. Additionally, we focus on various mechanisms of therapeutic resistance in gallbladder carcinoma and gene therapy approaches (such as miRNA/siRNA) which may enhance sensitivity of tumor cells to chemotherapeutic drugs. In addition, noncoding RNAs including miRNAs and lncRNAs have been considered as novel therapeutic measures in controlling progression of gallbladder carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abou-Alfa GK, Jarnagin W, El Dika I, D'Angelica M, Lowery M, Brown K, et al. Liver and bile duct cancer. In: Abeloff’s clinical oncology. Amsterdam: Elsevier; 2020. p. 1314–41. e11.

    Google Scholar 

  2. Ejaz A, Sachs T, Kamel IR, Pawlik TM. Gallbladder cancer—current management options. Oncol Hematol Rev. 2013;9(2):102–8.

    Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  Google Scholar 

  4. Henley SJ, Weir HK, Jim MA, Watson M, Richardson LC. Gallbladder cancer incidence and mortality, United States 1999–2011. Cancer Epidemiol Biomarkers Prev. 2015;24(9):1319–26.

    Article  Google Scholar 

  5. Diehl A, Beral V. Cholecystectomy and changing mortality from gallbladder cancer. Lancet. 1981;318(8239):187–9.

    Article  Google Scholar 

  6. Bharathi RS, Singh R, Gupta R, Verma GR, Kalra N, Kiran K, et al. Female sex hormone receptors in gallbladder cancer. J Gastrointest Cancer. 2015;46(2):143–8.

    Article  Google Scholar 

  7. Randi G, Franceschi S, La Vecchia C. Gallbladder cancer worldwide: geographical distribution and risk factors. Int J Cancer. 2006;118(7):1591–602.

    Article  CAS  Google Scholar 

  8. Roa I, Araya JC, Villaseca M, Roa J, De Aretxabala X, Ibacache G. Gallbladder cancer in a high risk area: morphological features and spread patterns. Hepatogastroenterology. 1999;46(27):1540–6.

    CAS  Google Scholar 

  9. Lowenfels A, Walker A, Althaus D, Townsend G, Domellöf L. Gallstone growth, size, and risk of gallbladder cancer: an interracial study. Int J Epidemiol. 1989;18(1):50–4.

    Article  CAS  Google Scholar 

  10. Diehl AK. Gallstone size and the risk of gallbladder cancer. JAMA. 1983;250(17):2323–6.

    Article  CAS  Google Scholar 

  11. Stinton LM, Shaffer EA. Epidemiology of gallbladder disease: cholelithiasis and cancer. Gut Liver. 2012;6(2):172.

    Article  Google Scholar 

  12. Gamboa AC, Maithel SK. The landmark series: gallbladder cancer. Ann Surg Oncol. 2020;27:2846–58.

    Article  Google Scholar 

  13. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washingotn MK, et al. AJCC cancer staging manual. 8th ed. New York: Springer; 2017.

    Book  Google Scholar 

  14. Agarwal AK, Kalayarasan R, Javed A, Gupta N, Nag HH. The role of staging laparoscopy in primary gall bladder cancer—an analysis of 409 patients: a prospective study to evaluate the role of staging laparoscopy in the management of gallbladder cancer. Ann Surg. 2013;258(2):318–23.

    Article  Google Scholar 

  15. Ebata T, Ercolani G, Alvaro D, Ribero D, Di Tommaso L, Valle JW. Current status on cholangiocarcinoma and gallbladder cancer. Liver Cancer. 2017;6(1):59–65.

    Article  Google Scholar 

  16. Nishio H, Ebata T, Yokoyama Y, Igami T, Sugawara G, Nagino M. Gallbladder cancer involving the extrahepatic bile duct is worthy of resection. Ann Surg. 2011;253(5):953–60.

    Article  Google Scholar 

  17. Ishihara S, Horiguchi A, Miyakawa S, Endo I, Miyazaki M, Takada T. Biliary tract cancer registry in Japan from 2008 to 2013. J Hepatobiliary Pancreat Sci. 2016;23(3):149–57.

    Article  Google Scholar 

  18. Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 2010;362(14):1273–81.

    Article  CAS  Google Scholar 

  19. Ben-Josef E, Guthrie KA, El-Khoueiry AB, Corless CL, Zalupski MM, Lowy AM, et al. SWOG S0809: a phase II intergroup trial of adjuvant capecitabine and gemcitabine followed by radiotherapy and concurrent capecitabine in extrahepatic cholangiocarcinoma and gallbladder carcinoma. J Clin Oncol. 2015;33(24):2617.

    Article  CAS  Google Scholar 

  20. Primrose JN, Fox RP, Palmer DH, Malik HZ, Prasad R, Mirza D, et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 2019;20(5):663–73.

    Article  CAS  Google Scholar 

  21. Qin T-J, Zhao X-H, Yun J, Zhang L-X, Ruan Z-P, Pan B-R. Efficacy and safety of gemcitabine-oxaliplatin combined with huachansu in patients with advanced gallbladder carcinoma. World J Gastroenterol. 2008;14(33):5210.

    Article  CAS  Google Scholar 

  22. Sharma A, Mohanti BK, Chaudhary SP, Sreenivas V, Sahoo RK, Shukla NK, et al. Modified gemcitabine and oxaliplatin or gemcitabine+ cisplatin in unresectable gallbladder cancer: results of a phase III randomised controlled trial. Eur J Cancer. 2019;123:162–70.

    Article  CAS  Google Scholar 

  23. Gunnlaugsson A, Anderson H, Lind P, Glimelius B, Johnsson A. Multicentre phase I–II trial of capecitabine and oxaliplatin in combination with radiotherapy for unresectable pancreatic and biliary tract cancer: the CORGI-U study. Radiother Oncol. 2010;95(3):292–7.

    Article  CAS  Google Scholar 

  24. Sinn M, Wege H, Stein A. Biliary tract cancer: on the way to a personalized therapy. Dtsch Med Wochenschr. 2020;145(7):442–6.

    CAS  Google Scholar 

  25. Belkouz A, de Vos-Geelen J, Mathôt RA, Eskens FA, van Gulik TM, van Oijen MG, et al. Efficacy and safety of FOLFIRINOX as salvage treatment in advanced biliary tract cancer: an open-label, single arm, phase 2 trial. Br J Cancer. 2020;122(5):634–9.

    Article  CAS  Google Scholar 

  26. Phelip J-M, Edeline J, Blanc J-F, Barbier E, Michel P, Bourgeois V, et al. Modified FOLFIRINOX versus CisGem first-line chemotherapy for locally advanced non resectable or metastatic biliary tract cancer (AMEBICA)-PRODIGE 38: study protocol for a randomized controlled multicenter phase II/III study. Dig Liver Dis. 2019;51(2):318–20.

    Article  CAS  Google Scholar 

  27. Yoo C, Han B, Kim HS, Kim K-p, Kim D, Jeong JH, et al. Multicenter phase II study of oxaliplatin, irinotecan, and S-1 as first-line treatment for patients with recurrent or metastatic biliary tract cancer. Cancer Res Treat. 2018;50(4):1324.

    Article  CAS  Google Scholar 

  28. Owen DJ, Evans PR. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science. 1998;282(5392):1327–32.

    Article  CAS  Google Scholar 

  29. Hernandez MC, Bergquist JR, Leiting JL, Ivanics T, Yang L, Smoot RL, et al. Patient-derived xenografts can be reliably generated from patient clinical biopsy specimens. J Gastrointest Surg. 2019;23(4):818–24.

    Article  Google Scholar 

  30. Mitin T, Enestvedt CK, Jemal A, Sineshaw HM. Limited use of adjuvant therapy in patients with resected gallbladder cancer despite a strong association with survival. J Natl Cancer Inst. 2017;109(7).

    Google Scholar 

  31. Benson AB 3rd, Abrams TA, Ben-Josef E, Bloomston PM, Botha JF, Clary BM, et al. NCCN clinical practice guidelines in oncology: hepatobiliary cancers. J Natl Compr Canc Netw. 2009;7(4):350–91.

    Article  CAS  Google Scholar 

  32. Horgan AM, Amir E, Walter T, Knox JJ. Adjuvant therapy in the treatment of biliary tract cancer: a systematic review and meta-analysis. Database of abstracts of reviews of effects (DARE): quality-assessed reviews [Internet]. 2012.

    Google Scholar 

  33. Ma N, Cheng H, Qin B, Zhong R, Wang B. Adjuvant therapy in the treatment of gallbladder cancer: a meta-analysis. BMC Cancer. 2015;15(1):1–10.

    Article  Google Scholar 

  34. Wang SJ, Lemieux A, Kalpathy-Cramer J, Ord CB, Walker GV, Fuller CD, et al. Nomogram for predicting the benefit of adjuvant chemoradiotherapy for resected gallbladder cancer. J Clin Oncol. 2011;29(35):4627.

    Article  Google Scholar 

  35. Hickman L, Contreras C. Gallbladder cancer: diagnosis, surgical management, and adjuvant therapies. Surg Clin North Am. 2019;99(2):337–55.

    Article  Google Scholar 

  36. Mantripragada KC, Hamid F, Shafqat H, Olszewski AJ. Adjuvant therapy for resected gallbladder cancer: analysis of the National cancer data base. J Natl Cancer Inst. 2017;109(2):djw202.

    Article  Google Scholar 

  37. Bergquist JR, Shah HN, Habermann EB, Hernandez MC, Ivanics T, Kendrick ML, et al. Adjuvant systemic therapy after resection of node positive gallbladder cancer: time for a well-designed trial? (results of a US-national retrospective cohort study). Int J Surg. 2018;52:171–9.

    Article  Google Scholar 

  38. Ghidini M, Tomasello G, Botticelli A, Barni S, Zabbialini G, Seghezzi S, et al. Adjuvant chemotherapy for resected biliary tract cancers: a systematic review and meta-analysis. HPB. 2017;19(9):741–8.

    Article  Google Scholar 

  39. Brand R. 3. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. 中国肿瘤临床. 2010;12.

    Google Scholar 

  40. Kim BJ, Hyung J, Yoo C, Kim K-p, Park S-J, Lee SS, et al. Prognostic factors in patients with advanced biliary tract cancer treated with first-line gemcitabine plus cisplatin: retrospective analysis of 740 patients. Cancer Chemother Pharmacol. 2017;80(1):209–15.

    Article  CAS  Google Scholar 

  41. Singh SK, Talwar R, Kannan N, Tyagi AK, Jaiswal P, Kumar A. Chemotherapy compared with best supportive care for metastatic/unresectable gallbladder cancer: a non-randomized prospective cohort study. Indian J Surg Oncol. 2016;7(1):25–31.

    Article  CAS  Google Scholar 

  42. Ren B, Guo Q, Yang Y, Liu L, Wei S, Chen W, et al. A meta-analysis of the efficacy of postoperative adjuvant radiotherapy versus no radiotherapy for extrahepatic cholangiocarcinoma and gallbladder carcinoma. Radiat Oncol. 2020;15(1):1–10.

    Article  Google Scholar 

  43. Bridgewater JA, Goodman KA, Kalyan A, Mulcahy MF. Biliary tract cancer: epidemiology, radiotherapy, and molecular profiling. Am Soc Clin Oncol Educ Book. 2016;36:e194–203.

    Article  Google Scholar 

  44. Hoehn RS, Wima K, Ertel AE, Meier A, Ahmad SA, Shah SA, et al. Adjuvant therapy for gallbladder cancer: an analysis of the National Cancer Data Base. J Gastrointest Surg. 2015;19(10):1794–801.

    Article  Google Scholar 

  45. Gu B, Qian L, Yu H, Hu J, Wang Q, Shan J, et al. Concurrent chemoradiotherapy in curatively resected gallbladder carcinoma: a propensity score–matched analysis. Int J Radiat Oncol Biol Phys. 2018;100(1):138–45.

    Article  Google Scholar 

  46. Kim TG. Patterns of initial failure after resection for gallbladder cancer: implications for adjuvant radiotherapy. Radiat Oncol J. 2017;35(4):359.

    Article  Google Scholar 

  47. Tran Cao HS, Zhang Q, Sada YH, Chai C, Curley SA, Massarweh NN. The role of surgery and adjuvant therapy in lymph node–positive cancers of the gallbladder and intrahepatic bile ducts. Cancer. 2018;124(1):74–83.

    Article  Google Scholar 

  48. Creasy JM, Goldman DA, Dudeja V, Lowery MA, Cercek A, Balachandran VP, et al. Systemic chemotherapy combined with resection for locally advanced gallbladder carcinoma: surgical and survival outcomes. J Am Coll Surg. 2017;224(5):906–16.

    Article  Google Scholar 

  49. Verma V, Surkar SM, Brooks ED, Simone CB, Lin C. Chemoradiotherapy versus chemotherapy alone for unresected nonmetastatic gallbladder cancer: national practice patterns and outcomes. J Natl Compr Canc Netw. 2018;16(1):59–65.

    Article  Google Scholar 

  50. Macdonald OK, Crane CH. Palliative and postoperative radiotherapy in biliary tract cancer. Surg Oncol Clin N Am. 2002;11(4):941–54.

    Article  Google Scholar 

  51. Kachalaki S, Ebrahimi M, Khosroshahi LM, Mohammadinejad S, Baradaran B. Cancer chemoresistance; biochemical and molecular aspects: a brief overview. Eur J Pharm Sci. 2016;89:20–30.

    Article  CAS  Google Scholar 

  52. Shukla SK, Singh G, Shahi K, Pant P. Staging, treatment, and future approaches of gallbladder carcinoma. J Gastrointest Cancer. 2018;49(1):9–15.

    Article  CAS  Google Scholar 

  53. Pilgrim CHC, Groeschl RT, Quebbeman EJ, Gamblin TC. Recent advances in systemic therapies and radiotherapy for gallbladder cancer. Surg Oncol. 2013;22(1):61–7.

    Article  Google Scholar 

  54. Goetze TO. Gallbladder carcinoma: prognostic factors and therapeutic options. World J Gastroenterol. 2015;21(43):12211.

    Article  Google Scholar 

  55. Derdak Z, Mark NM, Beldi G, Robson SC, Wands JR, Baffy G. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells. Cancer Res. 2008;68(8):2813–9.

    Article  CAS  Google Scholar 

  56. De Milito A, Fais S. Tumor acidity, chemoresistance and proton pump inhibitors. Future Oncol. 2005;1:779.

    Article  Google Scholar 

  57. Guaragnella N, Giannattasio S, Moro L. Mitochondrial dysfunction in cancer chemoresistance. Biochem Pharmacol. 2014;92(1):62–72.

    Article  CAS  Google Scholar 

  58. Robbins D, Zhao Y. New aspects of mitochondrial uncoupling proteins (UCPs) and their roles in tumorigenesis. Int J Mol Sci. 2011;12(8):5285–93.

    Article  CAS  Google Scholar 

  59. Su W-P, Lo Y-C, Yan J-J, Liao I-C, Tsai P-J, Wang H-C, et al. Mitochondrial uncoupling protein 2 regulates the effects of paclitaxel on Stat3 activation and cellular survival in lung cancer cells. Carcinogenesis. 2012;33(11):2065–75.

    Article  CAS  Google Scholar 

  60. Pons DG, Nadal-Serrano M, Torrens-Mas M, Valle A, Oliver J, Roca P. UCP2 inhibition sensitizes breast cancer cells to therapeutic agents by increasing oxidative stress. Free Radic Biol Med. 2015;86:67–77.

    Article  CAS  Google Scholar 

  61. Li W, Nichols K, Nathan C-A, Zhao Y. Mitochondrial uncoupling protein 2 is up-regulated in human head and neck, skin, pancreatic, and prostate tumors. Cancer Biomark. 2013;13(5):377–83.

    Article  CAS  Google Scholar 

  62. Brandi J, Cecconi D, Cordani M, Torrens-Mas M, Pacchiana R, Dalla Pozza E, et al. The antioxidant uncoupling protein 2 stimulates hnRNPA2/B1, GLUT1 and PKM2 expression and sensitizes pancreas cancer cells to glycolysis inhibition. Free Radic Biol Med. 2016;101:305–16.

    Article  CAS  Google Scholar 

  63. Esteves P, Pecqueur C, Alves-Guerra M-C. UCP2 induces metabolic reprogramming to inhibit proliferation of cancer cells. Mol Cell Oncol. 2015;2(1):e975024.

    Article  Google Scholar 

  64. Dando I, Fiorini C, Dalla Pozza E, Padroni C, Costanzo C, Palmieri M, et al. UCP2 inhibition triggers ROS-dependent nuclear translocation of GAPDH and autophagic cell death in pancreatic adenocarcinoma cells. Biochim Biophys Acta Mol Cell Res. 2013;1833(3):672–9.

    Article  CAS  Google Scholar 

  65. Katwal G, Baral D, Fan X, Weiyang H, Zhang X, Ling L, et al. SIRT3 a major player in attenuation of hepatic ischemia-reperfusion injury by reducing ROS via its downstream mediators: SOD2, CYP-D, and HIF-1α. Oxid Med Cell Longev. 2018;2018:1.

    Article  Google Scholar 

  66. Dalla Pozza E, Fiorini C, Dando I, Menegazzi M, Sgarbossa A, Costanzo C, et al. Role of mitochondrial uncoupling protein 2 in cancer cell resistance to gemcitabine. Biochim Biophys Acta Mol Cell Res. 2012;1823(10):1856–63.

    Article  CAS  Google Scholar 

  67. Yu J, Shi L, Lin W, Lu B, Zhao Y. UCP2 promotes proliferation and chemoresistance through regulating the NF-κB/β-catenin axis and mitochondrial ROS in gallbladder cancer. Biochem Pharmacol. 2020;172:113745.

    Article  CAS  Google Scholar 

  68. Hu Y, Yu K, Wang G, Zhang D, Shi C, Ding Y, et al. Lanatoside C inhibits cell proliferation and induces apoptosis through attenuating Wnt/β-catenin/c-Myc signaling pathway in human gastric cancer cell. Biochem Pharmacol. 2018;150:280–92.

    Article  CAS  Google Scholar 

  69. Zhang Z, Duan Q, Zhao H, Liu T, Wu H, Shen Q, et al. Gemcitabine treatment promotes pancreatic cancer stemness through the Nox/ROS/NF-κB/STAT3 signaling cascade. Cancer Lett. 2016;382(1):53–63.

    Article  CAS  Google Scholar 

  70. Hwang IT, Chung YM, Kim JJ, Chung JS, Kim BS, Kim HJ, et al. Drug resistance to 5-FU linked to reactive oxygen species modulator 1. Biochem Biophys Res Commun. 2007;359(2):304–10.

    Article  CAS  Google Scholar 

  71. Okon IS, Zou M-H. Mitochondrial ROS and cancer drug resistance: implications for therapy. Pharmacol Res. 2015;100:170–4.

    Article  CAS  Google Scholar 

  72. Weyemi U, Redon CE, Parekh PR, Dupuy C, Bonner WM. NADPH Oxidases NOXs and DUOXs as putative targets for cancer therapy. Anticancer Agents Med Chem. 2013;13(3):502–14.

    CAS  Google Scholar 

  73. Krause K-H. Tissue distribution and putative physiological function of NOX family NADPH oxidases. Jpn J Infect Dis. 2004;57(5):S28–9.

    Google Scholar 

  74. Desouki MM, Kulawiec M, Bansal S, Das GC, Singh KK. Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol Ther. 2005;4(12):1367–73.

    Article  CAS  Google Scholar 

  75. Sancho P, Fabregat I. NADPH oxidase NOX1 controls autocrine growth of liver tumor cells through up-regulation of the epidermal growth factor receptor pathway. J Biol Chem. 2010;285(32):24815–24.

    Article  CAS  Google Scholar 

  76. Liu X, Pei C, Yan S, Liu G, Liu G, Chen W, et al. NADPH oxidase 1-dependent ROS is crucial for TLR4 signaling to promote tumor metastasis of non-small cell lung cancer. Tumor Biol. 2015;36(3):1493–502.

    Article  CAS  Google Scholar 

  77. Zhan M, Wang H, Chen T, Chen W, Yang L, He M, et al. NOX1 mediates chemoresistance via HIF1α/MDR1 pathway in gallbladder cancer. Biochem Biophys Res Commun. 2015;468(1–2):79–85.

    Article  CAS  Google Scholar 

  78. Bleiberg H, Conroy T, Paillot B, Lacave A, Blijham G, Jacob J, et al. Randomised phase II study of cisplatin and 5-fluorouracil (5-FU) versus cisplatin alone in advanced squamous cell oesophageal cancer. Eur J Cancer. 1997;33(8):1216–20.

    Article  CAS  Google Scholar 

  79. Doval D, Sekhon J, Gupta S, Fuloria J, Shukla V, Gupta S, et al. A phase II study of gemcitabine and cisplatin in chemotherapy-naive, unresectable gall bladder cancer. Br J Cancer. 2004;90(8):1516–20.

    Article  CAS  Google Scholar 

  80. Peiffert D, Seitz J-F, Rougier P, Francois E, Cvitkovic F, Mirabel X, et al. Preliminary results of a phase II study of high-dose radiation therapy and neoadjuvant plus concomitant 5-fluorouracil with CDDP chemotherapy for patients with anal canal cancer: a French cooperative study. Ann Oncol. 1997;8(6):575–81.

    Article  CAS  Google Scholar 

  81. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006;12(9):440–50.

    Article  CAS  Google Scholar 

  82. Roos WP, Kaina B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett. 2013;332(2):237–48.

    Article  CAS  Google Scholar 

  83. Gosland M, Lum B, Schimmelpfennig J, Baker J, Doukas M. Insights into mechanisms of cisplatin resistance and potential for its clinical reversal. Pharmacotherapy. 1996;16(1):16–39.

    CAS  Google Scholar 

  84. Jordan P, Carmo-Fonseca M. Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci. 2000;57(8):1229–35.

    Article  CAS  Google Scholar 

  85. Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutat Res. 2001;478(1–2):23–43.

    Article  CAS  Google Scholar 

  86. Liu Y-X, Wang J, Guo J, Wu J, Lieberman HB, Yin Y. DUSP1 is controlled by p53 during the cellular response to oxidative stress. Mol Cancer Res. 2008;6(4):624–33.

    Article  CAS  Google Scholar 

  87. Denkert C, Schmitt WD, Berger S, Reles A, Pest S, Siegert A, et al. Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. Int J Cancer. 2002;102(5):507–13.

    Article  CAS  Google Scholar 

  88. Vicent S, Garayoa M, López-Picazo JM, Lozano MD, Toledo G, Thunnissen FB, et al. Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin Cancer Res. 2004;10(11):3639–49.

    Article  CAS  Google Scholar 

  89. Wang H-y, Cheng Z, Malbon CC. Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett. 2003;191(2):229–37.

    Article  CAS  Google Scholar 

  90. Liu C, Shi Y, Du Y, Ning X, Liu N, Huang D, et al. Dual-specificity phosphatase DUSP1 protects overactivation of hypoxia-inducible factor 1 through inactivating ERK MAPK. Exp Cell Res. 2005;309(2):410–8.

    Article  CAS  Google Scholar 

  91. Small GW, Shi YY, Higgins LS, Orlowski RZ. Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res. 2007;67(9):4459–66.

    Article  CAS  Google Scholar 

  92. Wang Z, Zhou JY, Kanakapalli D, Buck S, Wu GS, Ravindranath Y. High level of mitogen-activated protein kinase phosphatase-1 expression is associated with cisplatin resistance in osteosarcoma. Pediatr Blood Cancer. 2008;51(6):754–9.

    Article  Google Scholar 

  93. Fang J, Ye Z, Gu F, Yan M, Lin Q, Lin J, et al. DUSP1 enhances the chemoresistance of gallbladder cancer via the modulation of the p38 pathway and DNA damage/repair system. Oncol Lett. 2018;16(2):1869–75.

    Google Scholar 

  94. Liu F, Gore AJ, Wilson JL, Korc M. DUSP1 is a novel target for enhancing pancreatic cancer cell sensitivity to gemcitabine. PLoS One. 2014;9(1):e84982.

    Article  Google Scholar 

  95. Nakamura M, Nakashima H, Abe T, Ensako T, Yoshida K, Hino K. Gemcitabine-based adjuvant chemotherapy for patients with advanced gallbladder cancer. Anticancer Res. 2014;34(6):3125–9.

    CAS  Google Scholar 

  96. Unger S, Böhm D, Kaiser FJ, Kaulfuß S, Borozdin W, Buiting K, et al. Mutations in the cyclin family member FAM58A cause an X-linked dominant disorder characterized by syndactyly, telecanthus and anogenital and renal malformations. Nat Genet. 2008;40(3):287–9.

    Article  CAS  Google Scholar 

  97. Guen VJ, Gamble C, Flajolet M, Unger S, Thollet A, Ferandin Y, et al. CDK10/cyclin M is a protein kinase that controls ETS2 degradation and is deficient in STAR syndrome. Proc Natl Acad Sci. 2013;110(48):19525–30.

    Article  CAS  Google Scholar 

  98. Kasten M, Giordano A. Cdk10, a Cdc2-related kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. Oncogene. 2001;20(15):1832–8.

    Article  CAS  Google Scholar 

  99. Yu J-H, Zhong X-Y, Zhang W-G, Wang Z-D, Dong Q, Tai S, et al. CDK10 functions as a tumor suppressor gene and regulates survivability of biliary tract cancer cells. Oncol Rep. 2012;27(4):1266–76.

    Article  CAS  Google Scholar 

  100. Yu J, Zhang W, Lu B, Qian H, Tang H, Zhu Z, et al. miR-433 accelerates acquired chemoresistance of gallbladder cancer cells by targeting cyclin M. Oncol Lett. 2018;15(3):3305–12.

    Google Scholar 

  101. Ge G, Zhou C, Ren Y, Tang X, Wang K, Zhang W, et al. Enhanced SLC34A2 in breast cancer stem cell-like cells induces chemotherapeutic resistance to doxorubicin via SLC34A2-Bmi1-ABCC5 signaling. Tumor Biol. 2016;37(4):5049–62.

    Article  CAS  Google Scholar 

  102. Srivastava AK, Han C, Zhao R, Cui T, Dai Y, Mao C, et al. Enhanced expression of DNA polymerase eta contributes to cisplatin resistance of ovarian cancer stem cells. Proc Natl Acad Sci. 2015;112(14):4411–6.

    Article  CAS  Google Scholar 

  103. Li P-L, Zhang X, Wang L-L, Du L-T, Yang Y-M, Li J, et al. MicroRNA-218 is a prognostic indicator in colorectal cancer and enhances 5-fluorouracil-induced apoptosis by targeting BIRC5. Carcinogenesis. 2015;36(12):1484–93.

    CAS  Google Scholar 

  104. Sau A, Tregno FP, Valentino F, Federici G, Caccuri AM. Glutathione transferases and development of new principles to overcome drug resistance. Arch Biochem Biophys. 2010;500(2):116–22.

    Article  CAS  Google Scholar 

  105. Chen Q, Li W, Wan Y, Xia X, Wu Q, Chen Y, et al. Amplified in breast cancer 1 enhances human cholangiocarcinoma growth and chemoresistance by simultaneous activation of Akt and Nrf2 pathways. Hepatology. 2012;55(6):1820–9.

    Article  CAS  Google Scholar 

  106. Ding X-w, Wu J-h, Jiang C-p. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci. 2010;86(17–18):631–7.

    Article  CAS  Google Scholar 

  107. Sicchieri RD, Da Silveira WA, Mandarano LRM, de Oliveira TMG, Carrara HHA, Muglia VF, et al. ABCG2 is a potential marker of tumor-initiating cells in breast cancer. Tumor Biol. 2015;36(12):9233–43.

    Article  CAS  Google Scholar 

  108. Lee T-C, Ho I-C, Lu W-J, Huang J-d. Enhanced expression of multidrug resistance-associated protein 2 and reduced expression of aquaglyceroporin 3 in an arsenic-resistant human cell line. J Biol Chem. 2006;281(27):18401–7.

    Article  CAS  Google Scholar 

  109. Wang W, Sun Y-p, Huang X-z, He M, Chen Y-y, Shi G-y, et al. Emodin enhances sensitivity of gallbladder cancer cells to platinum drugs via glutathion depletion and MRP1 downregulation. Biochem Pharmacol. 2010;79(8):1134–40.

    Article  CAS  Google Scholar 

  110. Zhang X, Wu J. Prognostic role of microRNA-145 in prostate cancer: a systems review and meta-analysis. Prostate Int. 2015;3(3):71–4.

    Article  Google Scholar 

  111. Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 2009;125(2):345–52.

    Article  CAS  Google Scholar 

  112. Letelier P, García P, Leal P, Álvarez H, Ili C, López J, et al. miR-1 and miR-145 act as tumor suppressor microRNAs in gallbladder cancer. Int J Clin Exp Pathol. 2014;7(5):1849.

    Google Scholar 

  113. Zhan M, Zhao X, Wang H, Chen W, Xu S, Wang W, et al. miR-145 sensitizes gallbladder cancer to cisplatin by regulating multidrug resistance associated protein 1. Tumor Biol. 2016;37(8):10553–62.

    Article  CAS  Google Scholar 

  114. Isin M, Dalay N. LncRNAs and neoplasia. Clin Chim Acta. 2015;444:280–8.

    Article  CAS  Google Scholar 

  115. Jin K-T, Lu Z-B, Lv J-Q, Zhang J-G. The role of long non-coding RNAs in mediating chemoresistance by modulating autophagy in cancer. RNA Biol. 2020;17(12):1727–40.

    Article  CAS  Google Scholar 

  116. Ma B, Yuan Z, Zhang L, Lv P, Yang T, Gao J, et al. Long non-coding RNA AC023115. 3 suppresses chemoresistance of glioblastoma by reducing autophagy. Biochim Biophys Acta Mol Cell Res. 2017;1864(8):1393–404.

    Article  CAS  Google Scholar 

  117. Cai Q, Wang S, Jin L, Weng M, Zhou D, Wang J, et al. Long non-coding RNA GBCDRlnc1 induces chemoresistance of gallbladder cancer cells by activating autophagy. Mol Cancer. 2019;18(1):82.

    Article  Google Scholar 

  118. Müller BG, De Aretxabala X, González DM. A review of recent data in the treatment of gallbladder cancer: what we know, what we do, and what should be done. Am Soc Clin Oncol Educ Book. 2014;34(1):e165–e70.

    Article  Google Scholar 

  119. Maurya SK, Tewari M, Mishra RR, Shukla HS. Genetic abberations in gallbladder cancer. Surg Oncol. 2012;21(1):37–43.

    Article  Google Scholar 

  120. Valle JW, Lamarca A, Goyal L, Barriuso J, Zhu AX. New horizons for precision medicine in biliary tract cancers. Cancer Discov. 2017;7(9):943–62.

    Article  CAS  Google Scholar 

  121. Pignochino Y, Sarotto I, Peraldo-Neia C, Penachioni JY, Cavalloni G, Migliardi G, et al. Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas. BMC Cancer. 2010;10(1):1–14.

    Article  Google Scholar 

  122. Javle M, Churi C, Kang HC, Shroff R, Janku F, Surapaneni R, et al. HER2/neu-directed therapy for biliary tract cancer. J Hematol Oncol. 2015;8(1):1–9.

    Article  CAS  Google Scholar 

  123. Lee J, Park SH, Chang H-M, Kim JS, Choi HJ, Lee MA, et al. Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2012;13(2):181–8.

    Article  CAS  Google Scholar 

  124. Zhu AX, Meyerhardt JA, Blaszkowsky LS, Kambadakone AR, Muzikansky A, Zheng H, et al. Efficacy and safety of gemcitabine, oxaliplatin, and bevacizumab in advanced biliary-tract cancers and correlation of changes in 18-fluorodeoxyglucose PET with clinical outcome: a phase 2 study. Lancet Oncol. 2010;11(1):48–54.

    Article  CAS  Google Scholar 

  125. Valle JW, Wasan H, Lopes A, Backen AC, Palmer DH, Morris K, et al. Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): a randomised phase 2 trial. Lancet Oncol. 2015;16(8):967–78.

    Article  CAS  Google Scholar 

  126. Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, et al. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 2019;18(1):1–16.

    Article  Google Scholar 

  127. Wu XS, Wang F, Li HF, Hu YP, Jiang L, Zhang F, et al. Lnc RNA-PAGBC acts as a micro RNA sponge and promotes gallbladder tumorigenesis. EMBO Rep. 2017;18(10):1837–53.

    Article  CAS  Google Scholar 

  128. Hu Y-p, Jin Y-p, Wu X-s, Yang Y, Li Y-s, Li H-f, et al. LncRNA-HGBC stabilized by HuR promotes gallbladder cancer progression by regulating miR-502-3p/SET/AKT axis. Mol Cancer. 2019;18(1):1–18.

    Article  Google Scholar 

  129. Ye Y-Y, Mei J-W, Xiang S-S, Li H-F, Ma Q, Song X-L, et al. MicroRNA-30a-5p inhibits gallbladder cancer cell proliferation, migration and metastasis by targeting E2F7. Cell Death Dis. 2018;9(3):1–12.

    Article  Google Scholar 

  130. Ishigami K, Nosho K, Koide H, Kanno S, Mitsuhashi K, Igarashi H, et al. MicroRNA-31 reflects IL-6 expression in cancer tissue and is related with poor prognosis in bile duct cancer. Carcinogenesis. 2018;39(9):1127–34.

    Article  CAS  Google Scholar 

  131. Li M, Chen W, Zhang H, Zhang Y, Ke F, Wu X, et al. MiR-31 regulates the cisplatin resistance by targeting Src in gallbladder cancer. Oncotarget. 2016;7(50):83060.

    Article  Google Scholar 

  132. Lu W, Hu Y, Ma Q, Zhou L, Jiang L, Li Z, et al. miR-223 increases gallbladder cancer cell sensitivity to docetaxel by downregulating STMN1. Oncotarget. 2016;7(38):62364.

    Article  Google Scholar 

  133. Lu W, Zhang Y, Zhou L, Wang X, Mu J, Jiang L, et al. miR-122 inhibits cancer cell malignancy by targeting PKM2 in gallbladder carcinoma. Tumor Biol. 2016;37(12):15615–25.

    Article  CAS  Google Scholar 

  134. Yang D, Zhan M, Chen T, Chen W, Zhang Y, Xu S, et al. miR-125b-5p enhances chemotherapy sensitivity to cisplatin by down-regulating Bcl2 in gallbladder cancer. Sci Rep. 2017;7(1):1–9.

    Google Scholar 

  135. Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990;10(1):28–36.

    CAS  Google Scholar 

  136. Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L. Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA. 2010;16(8):1478–87.

    Article  CAS  Google Scholar 

  137. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.

    Article  CAS  Google Scholar 

  138. Paliogiannis P, Latte G, Imam KB. Noncoding RNAs in gallbladder cancer. In: Updates in gallbladder diseases. Rijeka: InTech; 2017.

    Google Scholar 

  139. Ma M-z, Zhang Y, Weng M-z, Wang S-h, Hu Y, Hou Z-y, et al. Long noncoding RNA GCASPC, a target of miR-17-3p, negatively regulates pyruvate carboxylase–dependent cell proliferation in gallbladder cancer. Cancer Res. 2016;76(18):5361–71.

    Article  CAS  Google Scholar 

  140. Liu B, Shen E-D, Liao M-M, Hu Y-B, Wu K, Yang P, et al. Expression and mechanisms of long non-coding RNA genes MEG3 and ANRIL in gallbladder cancer. Tumor Biol. 2016;37(7):9875–86.

    Article  CAS  Google Scholar 

  141. Mz M, Kong X, Mz W, Zhang M, Yy Q, Gong W, et al. Long non-coding RNA-LET is a positive prognostic factor and exhibits tumor-suppressive activity in gallbladder cancer. Mol Carcinog. 2015;54(11):1397–406.

    Article  Google Scholar 

  142. Ma F, Wang S-H, Cai Q, Zhang M-D, Yang Y, Ding J. Overexpression of LncRNA AFAP1-AS1 predicts poor prognosis and promotes cells proliferation and invasion in gallbladder cancer. Biomed Pharmacother. 2016;84:1249–55.

    Article  CAS  Google Scholar 

  143. Wu X-S, Wang X-A, Wu W-G, Hu Y-P, Li M-L, Ding Q, et al. MALAT1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the ERK/MAPK pathway. Cancer Biol Ther. 2014;15(6):806–14.

    Article  Google Scholar 

  144. Nahand JS, Karimzadeh MR, Nezamnia M, Fatemipour M, Khatami A, Jamshidi S, et al. The role of miR-146a in viral infection. IUBMB Life. 2020;72(3):343–60.

    Article  CAS  Google Scholar 

  145. Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–7.

    Article  CAS  Google Scholar 

  146. Zhou H, Guo W, Zhao Y, Wang Y, Zha R, Ding J, et al. Micro RNA-135a acts as a putative tumor suppressor by directly targeting very low density lipoprotein receptor in human gallbladder cancer. Cancer Sci. 2014;105(8):956–65.

    Article  CAS  Google Scholar 

  147. Peng H-H, Zhang Y-d, Gong L-S, Liu W-D, Zhang Y. Increased expression of microRNA-335 predicts a favorable prognosis in primary gallbladder carcinoma. Onco Targets Ther. 2013;6:1625.

    CAS  Google Scholar 

  148. Cai J, Xu L, Cai Z, Wang J, Zhou B, Hu H. MicroRNA-146b-5p inhibits the growth of gallbladder carcinoma by targeting epidermal growth factor receptor. Mol Med Rep. 2015;12(1):1549–55.

    Article  CAS  Google Scholar 

  149. Chang Y, Liu C, Yang J, Liu G, Feng F, Tang J, et al. MiR-20a triggers metastasis of gallbladder carcinoma. J Hepatol. 2013;59(3):518–27.

    Article  CAS  Google Scholar 

  150. Qiu Y, Luo X, Kan T, Zhang Y, Yu W, Wei Y, et al. TGF-β upregulates miR-182 expression to promote gallbladder cancer metastasis by targeting CADM1. Mol Biosyst. 2014;10(3):679–85.

    Article  CAS  Google Scholar 

  151. Cai Q, Wang X, Wang S, Jin L, Ding J, Zhou D, et al. Gallbladder cancer progression is reversed by nanomaterial-induced photothermal therapy in combination with chemotherapy and autophagy inhibition. Int J Nanomedicine. 2020;15:253.

    Article  CAS  Google Scholar 

  152. Zhan M, Yang R-m, Wang H, He M, Chen W, Xu S-w, et al. Guided chemotherapy based on patient-derived mini-xenograft models improves survival of gallbladder carcinoma patients. Cancer Commun. 2018;38(1):1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taghizadieh, M. et al. (2023). Gallbladder Cancer: Current Treatment Options and Therapeutics. In: Kumar Shukla, V., Pandey, M., Dixit, R. (eds) Gallbladder Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-19-6442-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6442-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6441-1

  • Online ISBN: 978-981-19-6442-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics