Skip to main content

Molecular Pathways in Gallbladder Cancer as Potential Therapeutic Target

  • Chapter
  • First Online:
Gallbladder Cancer

Abstract

Gallbladder carcinoma (GBC) is endemic in North Indian Gangetic planes, especially in females. The disease is usually diagnosed at advanced stage and is associated with a high mortality rate and poor survival. Limited chemotherapeutic options are available for treatment. There is a great need for the development of new treatment options including targeted therapy. An understanding of the molecular pathway involved in GBC carcinogenesis and identification of novel prognostic and predictive biomarkers involved in development and progression could be useful not only in early diagnosis, but also serve as potential therapeutic targets. Novel emerging therapies such as targeted agents and immunotherapy are exciting novel therapeutic options. This chapter focuses on the current understanding of the molecular pathways of GBC and emerging therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Are C, Ahmad H, Ravipati A, Croo D, Clarey D, Smith L, et al. Global epidemiological trends and variations in the burden of gallbladder cancer. J Surg Oncol. 2017;115(5):580–90.

    Article  Google Scholar 

  2. Randi G, Franceschi S, La Vecchia C. Gallbladder cancer worldwide: geographical distribution and risk factors. Int J Cancer. 2006;118(7):1591–602.

    Article  CAS  Google Scholar 

  3. Park YK, Kim SW, Park YH. A clinical study of gallbladder carcinoma. Korean J Gastroenterol. 1989;1989(21):113–22.

    Google Scholar 

  4. Kimura K, Ohto M, Saisho H, Unozawa T, Tsuchiya Y, Morita M, et al. Association of gallbladder carcinoma and anomalous pancreaticobiliary ductal union. Gastroenterology. 1985;89(6):1258–65.

    Article  CAS  Google Scholar 

  5. Wistuba Ignacio I, Gazdar Adi F. Gallbladder cancer: lessons from a rare tumour. Nat Rev Cancer. 2004;4(9):695–706. https://doi.org/10.1038/nrc1429.

    Article  CAS  Google Scholar 

  6. Sasatomi E, Tokunaga O, Miyazaki K. Precancerous conditions of gallbladder carcinoma: overview of histopathologic characteristics and molecular genetic findings. J. Hepatobiliary Pancreat Surg. 2000;7(6):556–67. https://doi.org/10.1007/s005340070004.

    Article  CAS  Google Scholar 

  7. Lazcano-Ponce EC, Miquel JF, Muñoz N, Herrero R, Ferrecio C, Wistuba II, et al. Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J Clin. 2001;51(6):349–64. https://doi.org/10.3322/canjclin.51.6.349.s.

    Article  CAS  Google Scholar 

  8. Masuhara S, Kasuya K, Aoki T, Yoshimatsu A, Tsuchida A, Koyanagi Y. Relation between K-rascodon 12 mutation and p53 protein overexpression in gallbladder cancer and biliary ductal epithelia in patients with pancreaticobiliary maljunction. J Hepatobiliary Pancreat Surg. 2000;7(2):198–205. https://doi.org/10.1007/s005340050176.

    Article  CAS  Google Scholar 

  9. Roa I, de Aretxabala X, Araya JC, Roa J. Preneoplastic lesions in gallbladder cancer. J Surg Oncol. 2006;93(8):615–23. https://doi.org/10.1002/jso.20527.

    Article  Google Scholar 

  10. Pfeifer GP. p53 mutational spectra and the role of methylated CpG sequences. Mutat Res. 2000;450(1–2):155–66. https://doi.org/10.1016/s0027-5107(00)00022-1.

    Article  CAS  Google Scholar 

  11. Shukla SK, Singh G, Shahi KS, Bhuvan, Pant P. Genetic changes of P 53 and Kras in gallbladder carcinoma in Kumaon region of Uttarakhand. J Gastrointest Cancer. 2020;51(2):552–9.

    Article  CAS  Google Scholar 

  12. Wistuba II, Gazdar AF, Roa I, Albores-Saavedra J. p53 protein overexpression in gallbladder carcinoma and its precursor lesions: an immune-histochemical study. Hum Pathol. 1996;27(4):360–5.

    Article  CAS  Google Scholar 

  13. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002;19(6):607–14. https://doi.org/10.1002/humu.10081.

    Article  CAS  Google Scholar 

  14. Singh A, Mishra PK, Saluja SS, Talikoti MA, Kirtani P, Najmi AK. Prognostic significance of HER-2 and p53 expression in gallbladder carcinoma in North Indian patients. Oncology. 2016;91(6):354–60. https://doi.org/10.1159/000450999.

    Article  CAS  Google Scholar 

  15. Kiguchi K, Carbajal S, Chan K, Beltrán L, Ruffino L, Shen J, et al. Constitutive expression of ErbB-2 in gallbladder epithelium results in development of adenocarcinoma. Cancer Res. 2001;61(19):6971–6.

    CAS  Google Scholar 

  16. Gazzeri S. Nuclear EGFR: a new mode of oncogenic signalling in cancer. Biol Aujourdhui. 2018;212(1–2):27–33. https://doi.org/10.1051/jbio/2018016.

    Article  Google Scholar 

  17. Zhang M, Cai S, Zuo B, Gong W, Tang Z, Zhou D, et al. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway. Tumour Biol. 2017;39(5):1010428317698359. https://doi.org/10.1177/1010428317698359.

    Article  CAS  Google Scholar 

  18. Song X, Hu Y, Li Y, Shao R, Liu F, Liu Y. Overview of current targeted therapy in gallbladder cancer. Sig Transduct Target Ther. 2020;5(1):1–9. https://doi.org/10.1038/s41392-020-00324-2.

    Article  CAS  Google Scholar 

  19. Lee YJ, Karl DL, Maduekwe UN, Rothrock C, Ryeom S, D’Amore PA, et al. Differential effects of VEGFR-1 and VEGFR-2 inhibition on tumor metastases based on host organ environment. Cancer Res. 2010;70(21):8357–67.

    Article  CAS  Google Scholar 

  20. Sun XN, Cao WG, Wang X, Wang Q, Gu BX, Yang QC, et al. Prognostic impact of vascular endothelial growth factor-A expression in resected gallbladder carcinoma. Tumour Biol. 2011;32(6):1183–90. https://doi.org/10.1007/s13277-011-0221-2.

    Article  CAS  Google Scholar 

  21. Dongqing XU, Jianwen LI, Jiang F, Kaishuang CAI, Guangxue REN. The effect and mechanism of vascular endothelial growth factor (VEGF) on tumor angiogenesis in gallbladder carcinoma. Iran J Public Health. 2019;48(4):713–21.

    Google Scholar 

  22. Liu MC, Jiang L, Hong HJ, Meng ZW, Du Q, Zhou LY, et al. Serum vascular endothelial growth factors C and D as forecast tools for patients with gallbladder carcinoma. Tumour Biol. 2015;36(8):6305–12. https://doi.org/10.1007/s13277-015-3316-3.

    Article  CAS  Google Scholar 

  23. Jiang L, Liu M, Cai X, Xie L, She F, Chen Y. Serum vascular endothelial growth factor-C levels predict lymph node metastasis and prognosis of patients with gallbladder cancer. Oncol Lett. 2018;16(5):6065–70. https://doi.org/10.3892/ol.2018.9358.

    Article  CAS  Google Scholar 

  24. Mambo E, Gao X, Cohen Y, Guo Z, Talalay P, Sidransky D. Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc Natl Acad Sci U S A. 2003;100(4):1838–43. https://doi.org/10.1073/pnas.0437910100.

    Article  CAS  Google Scholar 

  25. Tang M, Baez S, Pruyas M, Diaz A, Calvo A, Riquelme E, et al. Mitochondrial DNA mutation at the D310 (displacement loop) mononucleotide sequence in the pathogenesis of gallbladder carcinoma. Clin Cancer Res. 2004;10(3):1041–6. https://doi.org/10.1158/1078-0432.CCR-0701-3.

    Article  CAS  Google Scholar 

  26. Wistuba II, Ashfaq R, Maitra A, Alvarez H, Riquelme E, Gazdar AF. Fragile histidine triad gene abnormalities in the pathogenesis of gallbladder carcinoma. Am J Pathol. 2002;160(6):2073–9. https://doi.org/10.1016/S0002-9440(10)61157-1.

    Article  CAS  Google Scholar 

  27. Mu DQ, Peng YS, Xu QJ. Values of mutations of K-ras oncogene at codon 12 in detection of pancreatic cancer: 15-year experience. World J Gastroenterol. 2004;10(4):471–5. https://doi.org/10.3748/wjg.v10.i4.471.

    Article  CAS  Google Scholar 

  28. Hezel AF, Deshpande V, Zhu AX. Genetics of biliary tract cancers and emerging targeted therapies. J Clin Oncol. 2010;28(21):3531–40. https://doi.org/10.1200/JCO.2009.27.4787.

    Article  CAS  Google Scholar 

  29. Singh MK, Chetri K, Pandey UB, Kapoor VK, Mittal B, Choudhuri G. Mutational spectrum of K-ras oncogene among Indian patients with gallbladder cancer. J Gastroenterol Hepatol. 2004;19(8):916–21. https://doi.org/10.1111/j.1440-1746.2004.03355.x.

    Article  CAS  Google Scholar 

  30. Reuvers TGA, Kanaar R, Nonnekens J. DNA damage-inducing anticancer therapies: from global to precision damage. Cancers (Basel). 2020;12(8):2098. https://doi.org/10.3390/cancers12082098.

    Article  CAS  Google Scholar 

  31. Javle M, Bekaii-Saab T, Jain A, Wang Y, Kelley RK, Wang K, et al. Biliary cancer: utility of next-generation sequencing for clinical management. Cancer. 2016;122(24):3838–47. https://doi.org/10.1002/cncr.30254.

    Article  CAS  Google Scholar 

  32. Chae H, Kim D, Yoo C, Kim KP, Jeong JH, Chang HM, et al. Therapeutic relevance of targeted sequencing in management of patients with advanced biliary tract cancer: DNA damage repair gene mutations as a predictive biomarker. Eur J Cancer. 2019;120:31–9. https://doi.org/10.1016/j.ejca.2019.07.022.

    Article  CAS  Google Scholar 

  33. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20. https://doi.org/10.1056/NEJMoa1500596.

    Article  CAS  Google Scholar 

  34. Hansel DE, Rahman A, Hidalgo M, Thuluvath PJ, Lillemoe KD, Shulick R, et al. Identification of novel cellular targets in biliary tract cancers using global gene expression technology. Am J Pathol. 2003;163(1):217–29. https://doi.org/10.1016/S0002-9440(10)63645-0.

    Article  CAS  Google Scholar 

  35. Kornprat P, Rehak P, Ruschoff J, Langner C. Expression of IGF-I, IGF-II, and IGF-IR in gallbladder carcinoma: a systematic analysis including primary and corresponding metastatic tumours. J Clin Pathol. 2006;59(2):202–6. https://doi.org/10.1136/jcp.2005.028480.

    Article  CAS  Google Scholar 

  36. Tekcham DS, Gupta S, Shrivastav BR, Tiwari PK. Epigenetic downregulation of PTEN in gallbladder cancer. J Gastrointest Cancer. 2017;48(1):110–6. https://doi.org/10.1007/s12029-017-9919-8.

    Article  CAS  Google Scholar 

  37. Koga Y, Kitajima Y, Miyoshi A, Sato K, Kitahara K, Soejima H, et al. Tumor progression through epigenetic gene silencing of O(6)-methylguanine-DNA methyltransferase in human biliary tract cancers. Ann Surg Oncol. 2005;12:354–63. https://doi.org/10.1245/ASO.2005.07.020.

    Article  Google Scholar 

  38. Letelier P, Brebi P, Tapia O, Roa JC. DNA promoter methylation as a diagnostic and therapeutic biomarker in gallbladder cancer. Clin Epigenetics. 2012;4(1):11. https://doi.org/10.1186/1868-7083-4-11.

    Article  CAS  Google Scholar 

  39. Matsuda K, Maruyama H, Guo F, Kleeff J, Itakura J, Matsumoto Y, et al. Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res. 2001;61(14):5562–9.

    CAS  Google Scholar 

  40. Sinn M, Wege H, Stein A. Biliary tract cancer: on the way to a personalized therapy. Dtsch Med Wochenschr. 2020;145(7):442–6. https://doi.org/10.1055/a-0974-9694.

    Article  CAS  Google Scholar 

  41. Graham JS, Boyd K, Coxon FY, Wall LR, Eatock MM, Maughan TS, et al. A phase II study of capecitabine and oxaliplatin combination chemotherapy in patients with inoperable adenocarcinoma of the gall bladder or biliary tract. BMC Res Notes. 2016;9:161. https://doi.org/10.1186/s13104-015-1778-4.

    Article  CAS  Google Scholar 

  42. Primrose JN, Fox RP, Palmer DH, Malik HZ, Prasad R, Mirza D, et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): a randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 2019;20(5):663–73. https://doi.org/10.1016/S1470-2045(18)30915-X.

    Article  CAS  Google Scholar 

  43. Bragazzi MC, Ridola L, Safarikia S, Matteo SD, Costantini D, Nevi L, et al. New insights into cholangiocarcinoma: multiple stems and related cell lineages of origin. Ann Gastroenterol. 2018;31(1):42–55. https://doi.org/10.20524/aog.2017.0209.

    Article  Google Scholar 

  44. Bridgewater JA, Goodman KA, Kalyan A, Mulcahy MF. Biliary tract cancer: epidemiology, radiotherapy, and molecular profiling. Am Soc Clin Oncol Educ Book. 2016;35:e194–203. https://doi.org/10.1200/EDBK_160831.

  45. Jain A, Kwong LN, Javle M. Genomic profiling of biliary tract cancers and implications for clinical practice. Curr Treat Options Oncol. 2016;17(11):58. https://doi.org/10.1007/s11864-016-0432-2.

  46. Mhatre S, Wang Z, Nagrani R, Badwe R, Chiplunkar S, Mittal B, et al. Common genetic variation and risk of gallbladder cancer in India: a case-control genome-wide association study. Lancet Oncol. 2017;18(4):535–44. https://doi.org/10.1016/s1470-2045(17)30167-5.

    Article  Google Scholar 

  47. Iyer P, Shrikhande SV, Ranjan M, Joshi A, Gardi N, Prasad R, et al. ERBB2 and KRAS alterations mediate response to EGFR inhibitors in early stage gallbladder cancer. Int J Cancer. 2019;144(8):2008–19. https://doi.org/10.1002/ijc.31916.

    Article  CAS  Google Scholar 

  48. Wang W, Hu Z, Huang Y, Zheng H, Sun Q, Yang Q, et al. Pretreatment with gemcitabine/5-fluorouracil enhances the cytotoxicity of trastuzumab to HER2-negative human gallbladder cancer cells in vitro and in vivo. Biomed Res Int. 2019;2019:9205851. https://doi.org/10.1155/2019/9205851.

    Article  CAS  Google Scholar 

  49. Inagaki C, Maeda D, Kimura A, Otsuru T, Iwagami Y, Nishida N, et al. Gallbladder cancer harboring ERBB2 mutation on the primary and metastatic site: a case report. World J Gastrointest Oncol. 2019;11(9):761–7. https://doi.org/10.4251/wjgo.v11.i9.761.

    Article  Google Scholar 

  50. Xu MJ, Johnson DE, Grandis JR. EGFR-targeted therapies in the postgenomic era. Cancer Metastasis Rev. 2017;36(3):463–73. https://doi.org/10.1007/s10555-017-9687-8.

    Article  Google Scholar 

  51. Helena AY, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19(8):2240–7. https://doi.org/10.1158/1078-0432.CCR-12-2246.

    Article  CAS  Google Scholar 

  52. Park K, Han JY, Kim DW, Bazhenova LA, Ou SH, Pang YK, et al. 190TiP: ELUXA 1: phase II study of BI 1482694 (HM61713) in patients (pts) with T790M-positive non-small cell lung cancer (NSCLC) after treatment with an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI). J Thorac Oncol. 2016;11(4):S139.

    Article  Google Scholar 

  53. Malka D, Cervera P, Foulon S, Trarbach T, de la Fouchardière C, Boucher E, et al. Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary-tract cancer (BINGO): a randomised, open-label, non-comparative phase 2 trial. Lancet Oncol. 2014;15(8):819–28. https://doi.org/10.1016/S1470-2045(14)70212-8.

    Article  CAS  Google Scholar 

  54. Chong DQ, Ax Z. The landscape of targeted therapies for cholangiocarcinoma: current status and emerging targets. Oncotarget. 2016;7(29):46750–67. https://doi.org/10.18632/oncotarget.8775.

    Article  Google Scholar 

  55. Philip PA, Mahoney MR, Allmer C, Thomas J, Pitot HC, Kim G, et al. Phase II study of erlotinib in patients with advanced biliary cancer. J Clin Oncol. 2006;24(19):3069–74. https://doi.org/10.1200/JCO.2005.05.3579.

    Article  CAS  Google Scholar 

  56. Cai W, Yuan Y, Ge W, Fan Y, Liu X, Wu D, et al. EGFR target therapy combined with gemox for advanced biliary tract cancers: a meta-analysis based on RCTs. J Cancer. 2018;9(8):1476–85. https://doi.org/10.7150/jca.23290.

    Article  CAS  Google Scholar 

  57. Vogel A, Kasper S, Bitzer M, Kuhlmann A, Weichert W, Kubickaet S, et al. PICCA study: panitumumab in combination with cisplatin/gemcitabine chemotherapy in KRAS wildtype patients with biliary cancer—a randomised biomarker-driven clinical phase II AIO study. Eur J Cancer. 2018;92:11–9. https://doi.org/10.1016/j.ejca.2017.12.028.

    Article  CAS  Google Scholar 

  58. Zhu AX, Meyerhardt JA, Blaszkowsky LS, Kambadakone AR, Muzikansky A, Zheng H, et al. Efficacy and safety of gemcitabine, oxaliplatin, and bevacizumab in advanced biliary-tract cancers and correlation of changes in 18-fluorodeoxyglucose PET with clinical outcome: a phase 2 study. Lancet Oncol. 2010;11(1):48–54. https://doi.org/10.1016/S1470-2045(09)70333-X.

    Article  CAS  Google Scholar 

  59. Lubner SJ, Mahoney MR, Kolesar JL, Loconte NK, Kim GP, Pitot HC, et al. Report of a multicenter phase II trial testing a combination of biweekly bevacizumab and daily erlotinib in patients with unresectable biliary cancer: a phase II Consortium study. J Clin Oncol. 2010;28(21):3491–7. https://doi.org/10.1200/JCO.2010.28.4075.

    Article  CAS  Google Scholar 

  60. Sun W, Patel A, Normolle D, Patel K, Ohr J, Lee JJ, et al. A phase 2 trial of regorafenib as a single agent in patients with chemotherapy-refractory, advanced, and metastatic biliary tract adenocarcinoma. Cancer. 2019;125(6):902–9. https://doi.org/10.1002/cncr.31872.

    Article  CAS  Google Scholar 

  61. Moehler M, Maderer A, Schimanski C, Kanzler S, Denzer U, Kolligs FT, et al. Gemcitabine plus sorafenib versus gemcitabine alone in advanced biliary tract cancer: a double-blind placebo controlled multicentre phase II AIO study with biomarker and serum programme. Eur J Cancer. 2014;50(18):3125–35. https://doi.org/10.1016/j.ejca.2014.09.013.

    Article  CAS  Google Scholar 

  62. Valle JW, Wasan H, Lopes A, Backen AC, Palmer DH, Morris K, et al. Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): a randomised phase 2 trial. Lancet Oncol. 2015;16(8):967–78. https://doi.org/10.1016/S1470-2045(15)00139-4.

    Article  CAS  Google Scholar 

  63. Santoro A, Gebbia V, Pressiani T, Testa A, Personeni N, Bajardi EA, et al. A randomized, multicenter, phase II study of vandetanib monotherapy versus vandetanib in combination with gemcitabine versus gemcitabine plus placebo in subjects with advanced biliary tract cancer: the Van Gogh study. Ann Oncol. 2015;26(3):542–7. https://doi.org/10.1093/annonc/mdu576.

    Article  CAS  Google Scholar 

  64. Javle M, Lowery M, Shroff RT, Weiss KH, Springfeld C, Borad MJ, et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J Clin Oncol. 2018;36(3):276–82. https://doi.org/10.1200/JCO.2017.75.5009.

    Article  CAS  Google Scholar 

  65. Peluso I, Yarla NS, Ambra R, Pastore G, Perry G. MAPK signalling pathway in cancers: olive products as cancer preventive and therapeutic agents. Semin Cancer Biol. 2019;56:185–95. https://doi.org/10.1016/j.semcancer.2017.09.002.

    Article  CAS  Google Scholar 

  66. Ikeda M, Ioka T, Fukutomi A, Morizane C, Kasuga A, Takahashi H, et al. Efficacy and safety of trametinib in Japanese patients with advanced biliary tract cancers refractory to gemcitabine. Cancer Sci. 2018;109(1):215–24. https://doi.org/10.1111/cas.13438.

    Article  CAS  Google Scholar 

  67. Bekaii-Saab T, Phelps MA, Li X, Saji M, Goff L, Kauh JSW, et al. Multi-institutional phase II study of selumetinib in patient with metastatic biliary cancers. J Clin Oncol. 2011;29(17):2357–63. https://doi.org/10.1200/JCO.2010.33.9473.

    Article  CAS  Google Scholar 

  68. Zhang Y, Du P, Li Y, Zhu Q, Song X, Liu S, et al. TASP1 promotes gallbladder cancer cell proliferation and metastasis by up-regulating FAM49B via PI3K/AKT pathway. Int J Biol Sci. 2020;16(5):739–51. https://doi.org/10.7150/ijbs.40516.

    Article  CAS  Google Scholar 

  69. Li Q, Mou LJ, Tao L, Chen W, Sun XT, Xia XF, et al. Inhibition of mTOR suppresses human gallbladder carcinoma cell proliferation and enhances the cytotoxicity of 5-fluorouracil by downregulating MDR1 expression. Eur Rev Med Pharmacol Sci. 2016;20(9):1699–706.

    CAS  Google Scholar 

  70. Ahn DH, Li J, Wei L, Doyle A, Marshall JL, Schaaf LJ, et al. Results of an abbreviated phase-II study with the Akt inhibitor MK-2206 in patients with advanced biliary cancer. Sci Rep. 2015;5:12122. https://doi.org/10.1038/srep12122.

    Article  Google Scholar 

  71. Lee YY, Kim HP, Kang MJ, Cho BK, Han SW, Kim TY, et al. Phosphoproteomic analysis identifies activated MET-axis PI3K/AKT and MAPK/ERK in lapatinib-resistant cancer cell line. Exp Mol Med. 2013;45(11):e64. https://doi.org/10.1038/emm.2013.115.

    Article  CAS  Google Scholar 

  72. Heo MH, Kim HK, Lee H, Kim KM, Lee J, Park SH, et al. The clinical impact of c-MET over-expression in advanced biliary tract cancer (BTC). J Cancer. 2017;8(8):1395–9. https://doi.org/10.7150/jca.17898.

    Article  CAS  Google Scholar 

  73. Wang Q, Yang S, Wang K, Sun SY. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J Hematol Oncol. 2019;12(1):63. https://doi.org/10.1186/s13045-019-0759-9.

    Article  CAS  Google Scholar 

  74. Mehrotra R, Tulsyan S, Hussain S, Mittal B, Saluja SS, Singh S, et al. Genetic landscape of gallbladder cancer: global overview. Mutat Res Rev Mutat Res. 2018;778:61–71. https://doi.org/10.1016/j.mrrev.2018.08.003.

    Article  CAS  Google Scholar 

  75. Nakamura H, Arai Y, Totoki Y, Shirota T, Elzawahry A, Kato M, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47(9):1003–10. https://doi.org/10.1038/ng.3375.

    Article  CAS  Google Scholar 

  76. Pauff JM, Goff LW. Current progress in immunotherapy for the treatment of biliary cancers. J Gastrointest Cancer. 2016;47(4):351–7. https://doi.org/10.1007/s12029-016-9867-8.

    Article  CAS  Google Scholar 

  77. Kobayashi M, Sakabe T, Abe H, Tanii M, Takahashi H, Chiba A, et al. Dendritic cell-based immunotherapy targeting synthesized peptides for advanced biliary tract cancer. DC-vaccine study group at the Japan Society of Innovative Cell Therapy (J-SICT). J Gastrointest Surg. 2013;17(9):1609–17. https://doi.org/10.1007/s11605-013-2286-2.

    Article  Google Scholar 

  78. Okusaka T, Ueno M, Sato T, Heike Y. Possibility of immunotherapy for biliary tract cancer: how do we prove efficacy? Introduction to a current ongoing phase I and randomized phase II study to evaluate the efficacy and safety of adding Wilms tumor 1 peptide vaccine to gemcitabine and cisplatin for the treatment of advanced biliary tract cancer (WT-BT trial). J Hepatobiliary Pancreat Sci. 2012;19(4):314–8. https://doi.org/10.1007/s00534-011-0495-1.

    Article  Google Scholar 

  79. Makower D, Rozenblit A, Kaufman H, Edelman M, Lane ME, Zwiebel J, et al. Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin Cancer Res. 2003;9(2):693–702.

    Google Scholar 

  80. Kong W, Wei J, Liu J, Qiu Y, Shi J, He J, et al. Significant benefit of nivolumab combining radiotherapy in metastatic gallbladder cancer patient with strong PD-L1 expression: a case report. Onco Targets Ther. 2019;12:5389–93. https://doi.org/10.2147/OTT.S208926.

    Article  CAS  Google Scholar 

  81. Mishra SK, Kumari N, Krishnani N. Molecular pathogenesis of gallbladder cancer: an update. Mutat Res. 2019;816–818:111674. https://doi.org/10.1016/j.mrfmmm.2019.111674.

    Article  CAS  Google Scholar 

  82. Bang YJ, Doi T, Braud FD, Lee SS, Park DH, Oh DW, et al. Safety and efficacy of pembrolizumab (MK-3475) in patients with advanced biliary tract cancer: Interim results of KEYNOTE-028. Cancer Res Treat. 2020;52(2):594–603. https://doi.org/10.4143/crt.2019.493.

    Article  CAS  Google Scholar 

  83. Piha-Paul SA, Oh DY, Ueno M, Malka D, Chung HC, Nagrial A, et al. Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: results from the KEYNOTE-158 and KEYNOTE-028 studies. Int J Cancer. 2020;147(8):2190–8. https://doi.org/10.1002/ijc.33013.

    Article  CAS  Google Scholar 

  84. Xie C, Duffy AG, Hrones DM, Wood B, Levy E, Krishnasamy V, et al. Tremelimumab in combination with microwave ablation in patients with refractory biliary tract cancer. Hepatology. 2019;69(5):2048–60. https://doi.org/10.1002/hep.30482.

    Article  CAS  Google Scholar 

  85. Ioka T, Ueno M, Oh DY, Fujiwara Y, Chen JS, Doki Y, et al. Evaluation of safety and tolerability of durvalumab (D) with or without tremelimumab (T) in patients (pts) with biliary tract cancer (BTC). J Clin Oncol. 2019;37(4):387.

    Article  Google Scholar 

  86. Arkenau HT, Martin-Liberal J, Calvo E, Penel N, Krebs MG, Herbst RS, et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced or metastatic biliary tract cancer: nonrandomized, open-label, phase I trial (JVDF). Oncologist. 2018;23(12):1407–e136. https://doi.org/10.1634/theoncologist.2018-0044.

    Article  CAS  Google Scholar 

  87. Sahai V, Griffith KA, Beg MS, Shaib WL, Mahalingam D, Zhen DB, et al. A multi-center randomized phase II study of nivolumab in combination with gemcitabine/cisplatin or ipilimumab as first line therapy for patients with advanced unresectable biliary tract cancer. J Clin Oncol. 2018;36(15):4582. https://doi.org/10.1200/JCO.2020.38.15_suppl.4582.

    Article  Google Scholar 

  88. Zanoni M, Cortesi M, Zamagni A, Arienti C, Pignatta S, Tesei A. Modeling neoplastic disease with spheroids and organoids. J Hematol Oncol. 2020;13:97. https://doi.org/10.1186/s13045-020-00931-0.

    Article  Google Scholar 

  89. Huang YP, Liu K, Wang YX, Yang Y, Xiong L, Zhanget ZJ, et al. Application and research progress of organoids in cholangiocarcinoma and gallbladder carcinoma. Am J Cancer Res. 2021;11(1):31–42.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Prakash, P., Kumar, V., Chaturvedi, A., Tiwari, S. (2023). Molecular Pathways in Gallbladder Cancer as Potential Therapeutic Target. In: Kumar Shukla, V., Pandey, M., Dixit, R. (eds) Gallbladder Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-19-6442-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6442-8_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6441-1

  • Online ISBN: 978-981-19-6442-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics