Skip to main content

Plant Phenolics: As Antioxidants and Potent Compounds Under Multiple Stresses

  • Chapter
  • First Online:
Plant Phenolics in Abiotic Stress Management

Abstract

Reactive species are categorized into two broad sub-categories, reactive oxygen species (ROS) and reactive nitrogen species (RNS), possessing either a free radical with an unpaired electron in the valence shell or a neutral molecule. Free radicals are classified as one of the crucial steps in stress signaling which often cause unavoidable impairment to the essential biomolecules as a result of which the cell experiences various regulatory impairments. Redox homeostasis between the oxidants and antioxidants is the key to ensure normal cell functioning. As far as the current scientific evidence is concerned, almost all the plants possess natural antioxidants distributed throughout different parts of the plants. Different antioxidant assays show the potentiality of plant phenolics as an effective radical scavenger. Multiple hydroxyl and carbonyl groups of polyphenols help in the establishment of stable metal- and protein–polyphenol complex thereby restricting the development of free radicals. Phenols are known to work harmonious with other antioxidants thereby escalating the overall radical scavenging activity. A plentiful of research is evident on the propensity of plant phenolics as antioxidants but two things limit their current usability as food antioxidants. First, plant phenols are secondary metabolites and their continuous biotransformation inside the cells and tissues is an obvious event making their bioavailability difficult. Second, there are a few pieces of evidence on the toxicity and/or carcinogenicity of plant phenolics which restricts the considerations for the acceptability of such antioxidants as food additives. By considering the before-mentioned facts, this chapter compiles the emerging roles of phenolic compounds as antioxidant and impacts of multiple stressors on plant processes and stress managements through phenolic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  Google Scholar 

  • Al-Ghamdi AA, Elansary HO (2018) Synergetic effects of 5-aminolevulinic acid and Ascophyllum nodosum seaweed extracts on Asparagus phenolics and stress related genes under saline irrigation. Plant Physiol Biochem 129:273–284

    Article  CAS  Google Scholar 

  • Amarowicz R, Weidner S, Wójtowicz I, Karmac M, Kosinska A, Rybarczyk A (2010) Influence of low-temperature stress on changes in the composition of grapevine leaf phenolic compounds and their antioxidant properties. Funct Plant Sci Biot 4:90–96

    Google Scholar 

  • Amist N, Bano C, Singh NB (2019) Antioxidative machinery for redox homeostasis during abiotic stress. In: Molecular plant abiotic stress: biology and biotechnology, vol 12. Wiley, Hoboken, NJ, pp 65–90

    Chapter  Google Scholar 

  • Archetti M (2009) Decoupling vigour and quality in the autumn colours game: weak individuals can signal, cheating can pay. J Theor Biol 256(3):479–484

    Article  Google Scholar 

  • Archetti M, Döring TF, Hagen SB, Hughes NM, Leather SR, Lee DW, Lev-Yadun S, Manetas Y, Ougham HJ, Schaberg PG, Thomas H (2009) Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends Ecol Evol 24(3):166–173

    Article  Google Scholar 

  • Ashraf MA, Iqbal M, Rasheed R, Hussain I, Riaz M, Arif MS (2018) Environmental stress and secondary metabolites in plants: an overview. In: Plant metabolites and regulation under environmental stress. Academic Press, London, pp 153–167

    Google Scholar 

  • Beckman CH (2000) Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant Pathol 57(3):101–110

    Article  CAS  Google Scholar 

  • Berhow MA (2000) Effects of early plant growth regulator treatments on flavonoid levels in grapefruit. Plant Growth Reg 30:225–232

    Article  CAS  Google Scholar 

  • Berli FJ, Alonso R, Beltrano J, Bottini R (2015) High-altitude solar UV-B and abscisic acid sprays increase grape berry antioxidant capacity. Am J Enol Vitic 66(1):65–72

    Article  CAS  Google Scholar 

  • Booij-James IS, Dube SK, Jansen MAK, Edelman M, Mattoo AK (2000) Ultraviolet-B radiation impacts light-mediated turnover of the photosystem II reaction center heterodimer in arabidopsis mutants altered in phenolic metabolism. Plant Physiol 124(3):1275–1283

    Article  CAS  Google Scholar 

  • Bors W, Michel C (2002) Chemistry of the antioxidant effect of polyphenols. Ann N Y Acad Sci 957(1):57–69

    Article  CAS  Google Scholar 

  • Bovy A, Schijlen E, Hall RD (2007) Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for metabolomics. Metabolomics 3:399–412

    Article  CAS  Google Scholar 

  • Bunaciu AA, Aboul-Enein HY, Fleschin S (2012) FTIR spectrophotometric methods used for antioxidant activity assay in medicinal plants. Appl Spectrosc Rev 47(4):245–255

    Article  CAS  Google Scholar 

  • Campos ÂD, Ferreira AG, Hampe MM, Antunes IF, Brancão N, Silveira EP, Silva JB, Osório VA (2003) Induction of chalcone synthase and phenylalanine ammonia-lyase by salicylic acid and Colletotrichum lindemuthianum in common bean. Braz J Plant Physiol 15(3):129–134

    Article  CAS  Google Scholar 

  • Casacuberta JM, Devos Y, Jardin P, Ramon M, Vaucheret H, Nogue F (2015) Biotechnological uses of RNAi in plants: risk assessment considerations. Trends Biotechnol 33(3):145–147

    Article  CAS  Google Scholar 

  • Chen S, Wang Q, Lu H, Li J, Yang D, Liu J, Yan C (2019) Phenolic metabolism and related heavy metal tolerance mechanism in Kandelia Obovata under Cd and Zn stress. Ecotoxicol Environ Saf 169:134–143

    Article  CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  Google Scholar 

  • Dai GH, Nicole M, Andary C, Martinez C, Bresson E, Boher B, Daniel JF, Geiger JP (1996) Flavonoids accumulate in cell walls, middle lamellae and callose-rich papillae during an incompatible interaction between Xanthomonas campestris pv. malvacearum and cotton. Physiol Mol Plant Pathol 49(5):285–306

    Article  CAS  Google Scholar 

  • Davuluri GR, Tuinen A, van Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMJ, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23(7):890–895

    Article  CAS  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT, Ballaré CL (2010) Jasmonate-dependent and-independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152(2):1084–1095

    Article  CAS  Google Scholar 

  • do Nascimento NC, Fett-Neto AG (2010) Plant secondary metabolism and challenges in modifying its operation: an overview. In: Plant secondary metabolism engineering. Humana Press, Totowa, NJ, pp 1–13

    Google Scholar 

  • Downey MO, Harvey JS, Robinson SP (2004) The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Aust J Grape Wine Res 10(1):55–73

    Article  CAS  Google Scholar 

  • Du Y, Scheres B (2018) Lateral root formation and the multiple roles of auxin. J Exp Bot 69(2):155–167

    Article  CAS  Google Scholar 

  • Elavarthi S, Martin B (2010) Spectrophotometric assays for antioxidant enzymes in plants. In: Plant stress tolerance. Humana Press, New York, pp 273–280

    Chapter  Google Scholar 

  • Fletcher RS, Slimmon T, McAuley CY, Kott LS (2005) Heat stress reduces the accumulation of rosmarinic acid and the total antioxidant capacity in spearmint (Mentha spicata L). J Sci Food Agric 85(14):2429–2436

    Article  CAS  Google Scholar 

  • Fritz C, Palacios-Rojas N, Feil R, Stitt M (2006) Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J 46(4):533–548

    Article  CAS  Google Scholar 

  • Gambetta GA, Matthews MA, Shaghasi TH, McElrone AJ, Castellarin SD (2010) Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. Planta 232(1):219–234

    Article  CAS  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defense. Mol Plant Microbe Interact 19(7):711–724

    Article  CAS  Google Scholar 

  • Ghasemi S, Kumleh HH, Kordrostami M (2019) Changes in the expression of some genes involved in the biosynthesis of secondary metabolites in Cuminum cyminum L. under UV stress. Protoplasma 256(1):279–290

    Article  CAS  Google Scholar 

  • Gnanasekaran N, Kalavathy S (2017) Drought stress signal promote the synthesis of more reduced phenolic compounds (chloroform insoluble fraction) in Tridax procumbens. Free Radic Antioxid 7(1). https://doi.org/10.5530/fra.2017.1.19

  • Godara OP, Kakralya BL, Kumar S, Kumar V, Singhal RK (2016) Influence of sowing time, varieties and salicylic acid application on different physiological parameters of Indian mustard (Brassica juncea L). J Pure Appl Microbiol 10(4):3063–3069

    Article  CAS  Google Scholar 

  • Griffith M, Yaish MW (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9(8):399–405

    Article  CAS  Google Scholar 

  • Handa N, Kohli SK, Sharma A, Thukral AK, Bhardwaj R, Abd Allah EF, Alqarawi AA, Ahmad P (2019) Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environ Exp Bot 161:180–192

    Article  CAS  Google Scholar 

  • Harborne JB (1964) Biochemistry of phenolic compounds. Academic Press, London

    Google Scholar 

  • Henkes S, Sonnewald U, Badur R, Flachmann R, Stitt M (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13(3):535–551

    Article  CAS  Google Scholar 

  • Houston K, Tucker MR, Chowdhury J, Shirley N, Little A (2016) The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front Plant Sci 7:984

    Article  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53(6):1841–1856

    Article  CAS  Google Scholar 

  • Hughes NM (2011) Winter leaf reddening in ‘evergreen’ species. New Phytol 190(3):573–581

    Article  Google Scholar 

  • Hussain MB, Hassan S, Waheed M, Javed A, Farooq MA, Tahir A (2019) Plant physiological aspects of phenolic compounds. InTech, London

    Google Scholar 

  • Jamwal K, Bhattacharya S, Puri S (2018) Plant growth regulator mediated consequences of secondary metabolites in medicinal plants. J Appl Res Med Aromatic Plants 9:26–38

    Article  Google Scholar 

  • Kaur G, Asthir BJ (2015) Proline: a key player in plant abiotic stress tolerance. Biol Plant 59(4):609–619

    Article  CAS  Google Scholar 

  • Kisa D, Elmastaş M, Öztürk L, Kayır Ö (2016) Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl Biol Chem 59(6):813–820

    Article  CAS  Google Scholar 

  • Koricheva J, Nykänen H, Gianoli E (2004) Meta-analysis of trade-offs among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all? Am Nat 163(4):64–75

    Article  Google Scholar 

  • Kumar S, Abedin M, Singh AK, Das S (2020a) Role of phenolic compounds in plant-defensive mechanisms. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 517–532

    Chapter  Google Scholar 

  • Kumar S, Bhushan B, Wakchaure GC, Meena KK, Kumar M, Meena NL, Rane J (2020b) Plant phenolics under water-deficit conditions: Biosynthesis, accumulation, and physiological roles in water stress alleviation. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 451–465

    Chapter  Google Scholar 

  • Kumar M, Tak Y, Potkule J, Choyal P, Tomar M, Meena NL, Kaur C (2020c) Phenolics as plant protective companion against abiotic stress. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 277–308

    Chapter  Google Scholar 

  • Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119:4–17

    Article  CAS  Google Scholar 

  • Lattanzio V (2013) Phenolic compounds: introduction. In: Ramawat KG, Mérillon J-M (eds) Handbook of natural products. Springer, Berlin

    Google Scholar 

  • Lattanzio V, Cardinali A, Ruta C, Fortunato IM, Lattanzio VM, Linsalata V, Cicco N (2009) Relationship of secondary metabolism to growth in oregano (Origanum vulgare L.) shoot cultures under nutritional stress. Environ Exp Bot 65(1):54–62

    Article  CAS  Google Scholar 

  • Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57(7):1187–1195

    Article  CAS  Google Scholar 

  • Leser C, Treutter D (2005) Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen (scab) resistance of apple trees. Physiol Plant 123(1):49–56

    Article  CAS  Google Scholar 

  • Linić I, Šamec D, Grúz J, Vujčić Bok V, Strnad M, Salopek-Sondi B (2019) Involvement of phenolic acids in short-term adaptation to salinity stress is species-specific among Brassicaceae. Plan Theory 8(6):155

    Google Scholar 

  • Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J Nutr 134:3479S–3485S

    Article  CAS  Google Scholar 

  • Lloyd JC, Zakhleniuk OV (2004) Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J Exp Bot 55(400):1221–1230

    Article  CAS  Google Scholar 

  • MacRae WD, Towers GN (1984) Biological activities of lignans. Phytochemistry 23(6):1207–1220

    Article  CAS  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105

    Article  CAS  Google Scholar 

  • Manach C, Morand C, Crespy V, Demigné C, Texier O, Régérat F, Rémésy C (1998) Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett 426(3):331–336

    Article  CAS  Google Scholar 

  • Marsilio V, d’Andria R, Lanza B, Russi F, Iannucci E, Lavini A, Morelli G (2006) Effect of irrigation and lactic acid bacteria inoculants on the phenolic fraction, fermentation and sensory characteristics of olive (Olea europaea L. cv. Ascolana tenera) fruits. J Sci Food Agric 86(6):1005–1013

    Article  CAS  Google Scholar 

  • Mori K, Sugaya S, Gemma H (2005) Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hortic 105(3):319–330

    Article  CAS  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63(3):708–724

    Article  CAS  Google Scholar 

  • Naikoo MI, Dar MI, Raghib F, Jaleel H, Ahmad B, Raina A, Khan FA, Naushin F (2019) Role and regulation of plants phenolics in abiotic stress tolerance: an overview. In: Plant signaling molecules. Woodhead Publishing, Duxford, pp 157–168

    Chapter  Google Scholar 

  • Nakane E, Kawakita K, Doke N, Yoshioka H (2003) Elicitation of primary and secondary metabolism during defense in the potato. J Gen Plant Pathol 69(6):378–384

    Article  CAS  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30(1):369–389

    Article  CAS  Google Scholar 

  • Nikiforou C, Manetas Y (2010) Strength of winter leaf redness as an indicator of stress vulnerable individuals in Pistacia lentiscus. Flora Morphol Distrib Funct Ecol Plants 205(6):424–427

    Article  Google Scholar 

  • Noctor G, Reichheld JP, Foyer CH (2018) ROS-related redox regulation and signalling in plants. In: Seminars in cell and developmental biology, vol 80. Academic Press, London, pp 3–12

    Google Scholar 

  • North JJ, Ndakidemi PA, Laubscher CP (2012) Effects of antioxidants, plant growth regulators and wounding on phenolic compound excretion during micropropagation of Strelitzia reginae. Int J Phys Sci 7(4):638–646

    Article  CAS  Google Scholar 

  • Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821

    Article  CAS  Google Scholar 

  • Parvez MM, Tomita-Yokotani K, Fujii Y, Konishi T, Iwashina T (2004) Effects of quercetin and its seven derivatives on the growth of Arabidopsis thaliana and Neurospora crassa. Biochem Syst Ecol 32(7):631–635

    Article  CAS  Google Scholar 

  • Perin EC, da Silva Messias R, Borowski JM, Crizel RL, Schott IB, Carvalho IR, Rombaldi CV, Galli V (2019) ABA-dependent salt and drought stress improve strawberry fruit quality. Food Chem 15(271):516–526

    Article  Google Scholar 

  • Pridham JB (1960) Phenolics in plants in health and disease. In: Proceedings of a plant phenolics group symposium held at Bristol, April 1959. Pergamon Press, Oxford, London

    Google Scholar 

  • Reuber S, Bornman JF, Weissenbock G (1996) A flavonoid mutant of barley (Hordeum vulgare L.) exhibits increased sensitivity to UV-B radiation in the primary leaf. Plant Cell Environ 19(5):593–601

    Article  CAS  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2(4):152–159

    Article  Google Scholar 

  • Rossi L, Borghi M, Francini A, Lin X, Xie DY, Sebastiani L (2016) Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). J Plant Physiol 204:8–15

    Article  CAS  Google Scholar 

  • Ruiz JM, Bretones G, Baghour M, Ragala L, Belakbir A, Romero L (1998) Relationship between boron and phenolic metabolism in tobacco leaves. Phytochemistry 48(2):269–272

    Article  CAS  Google Scholar 

  • Ruiz JM, Rivero RM, Lopez-Cantarero I, Romero L (2003) Role of Ca2+ in the metabolism of phenolic compounds in tobacco leaves (Nicotiana tabacum L.). Plant Growth Regul 41(2):173–177

    Article  CAS  Google Scholar 

  • Samanta A, Das G, Das SK (2011) Roles of flavonoids in plants. Carbon 100(6):12–35

    Google Scholar 

  • Sánchez-Rodríguez E, Moreno DA, Ferreres F, del Mar Rubio-Wilhelmi M, Ruiz JM (2011) Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochemistry 72(8):723–729

    Article  Google Scholar 

  • Santos TP, Lopes CM, Rodrigues ML, De Souza CR, Ricardo-Da-Silva JM, Maroco JP, Pereira JS, Chaves MM (2005) Effects of partial root-zone drying irrigation on cluster microclimate and fruit composition of field-grown Castelao grapevines. Vitis 44(3):117–125

    Google Scholar 

  • Shankar SR, Girish R, Karthik N, Rajendran R, Mahendran VS (2009) Allelopathic effects of phenolics and terpenoids extracted from Gimelina arborea on germination of Black gram (Vigna mungo) and Green gram (Vigna radiata). Allelopath J 23(2):323–332

    Google Scholar 

  • Sharma M, Sandhir R, Singh A, Kumar P, Mishra A, Jachak S, Singh SP, Singh J, Roy J (2016) Comparative analysis of phenolic compound characterization and their biosynthesis genes between two diverse bread wheat (Triticum aestivum) varieties differing for chapatti (Unleavened Flat Bread) quality. Front Plant Sci 15(7):1870

    Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452

    Article  CAS  Google Scholar 

  • Shetty K, Wahlqvist M (2004) A model for the role of the proline-linked pentose-phosphate pathway in phenolic phytochemical bio-synthesis and mechanism of action for human health and environmental applications. Asia Pac J Clin Nutr 13(1):1–24

    CAS  Google Scholar 

  • Shih CH, Chen Y, Wang M, Chu IK, Lo C (2008) Accumulation of isoflavonegenistin in transgenic tomato plants overexpressing a soybean isoflavone synthase gene. J Agric Food Chem 56:5655–5661

    Article  CAS  Google Scholar 

  • Singhal RK, Sodani R, Chauhan J, Sharma MK, Yashu BR (2017) Physiological adaptation and tolerance mechanism of rice (Oryza sativa L.) in multiple abiotic stresses. Int J Pure Appl Biosci 5(3):459–466

    Article  Google Scholar 

  • Siqueira JO, Nair MG, Hammerschmidt R, Safir GR, Putnam AR (1991) Significance of phenolic compounds in plant-soil-microbial systems. Crit Rev Plant Sci 10(1):63–121

    Article  CAS  Google Scholar 

  • Spayd SE, Wample RL, Evans RG, Stevens RG, Seymour BJ, Nagel CW (1994) Nitrogen fertilization of white Riesling grapes in Washington. Must and wine composition. Am J Enol Vitic 45(1):34–42

    CAS  Google Scholar 

  • Spayd SE, Tarara JM, Mee DL, Ferguson JC (2002) Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am J Enol Vitic 53(3):171–182

    Article  CAS  Google Scholar 

  • Suzuki N, Koussevitzky SH, Mittler RO, Miller GA (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259–270

    Article  CAS  Google Scholar 

  • Świeca M (2015) Elicitation with abiotic stresses improves pro-health constituents, antioxidant potential and nutritional quality of lentil sprouts. Saudi J Biol Sci 22(4):409–416

    Article  Google Scholar 

  • Tak Y, Kumar M (2020) Phenolics: a key defence secondary metabolite to counter biotic stress. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 309–329

    Chapter  Google Scholar 

  • Tanase C, Boz I, Stingu A, Volf I, Popa VI (2014) Physiological and biochemical responses induced by spruce bark aqueous extract and deuterium depleted water with synergistic action in sunflower (Helianthus annuus L.) plants. Ind Crop Prod 60:160–167

    Article  CAS  Google Scholar 

  • Tanase C, Bara CI, Popa VI (2015) Cytogenetical effect of some polyphenol compounds separated from industrial by-products on maize (Zea mays L.) plants. Cell Chem Technol 49(9–10):799–805

    CAS  Google Scholar 

  • Taylor LP, Grotewold E (2005) Flavonoids as developmental regulators. Curr Opin Plant Biol 8(3):317–323

    Article  CAS  Google Scholar 

  • Tyagi K, Shukla P, Rohela GK, Shabnam AA, Gautam R (2020) Plant phenolics: their biosynthesis, regulation, evolutionary significance, and role in senescence. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 431–449

    Chapter  Google Scholar 

  • Van Der Meer IM, Stam ME, van Tunen AJ, Mol JN, Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4(3):253–262

    Google Scholar 

  • Verma N, Shukla S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromatic Plants 2(4):105–113

    Article  Google Scholar 

  • Verpoorte R, van der Heijden R, Memelink J (2000) Engineering the plant cell factory for secondary metabolite production. Transgenic Res 9(4–5):323–343

    Article  CAS  Google Scholar 

  • Vos IA, Pieterse CM, Van Wees SC (2013) Costs and benefits of hormone-regulated plant defences. Plant Pathol 62:43–55

    Article  Google Scholar 

  • Wagay NA, Lone R, Rafiq S, Bashir SU (2020) Phenolics: a game changer in the life cycle of plants. In: Plant phenolics in sustainable agriculture. Springer, Singapore, pp 241–275

    Chapter  Google Scholar 

  • Walters D, Heil M (2007) Costs and trade-offs associated with induced resistance. Physiol Mol Plant Pathol 71(1–3):3–17

    Article  CAS  Google Scholar 

  • Wang LY, Liu JL, Wang WX, Sun Y (2016) Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54(1):19–27

    Article  Google Scholar 

  • Wang L, Shan T, Xie B, Ling C, Shao S, Jin P, Zheng Y (2019) Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms. Food Chem 272:530–538

    Article  CAS  Google Scholar 

  • Wink M (1997) Compartmentation of secondary metabolites and xenobiotics in plant vacuoles. In: Advances in botanical research, vol 25. Academic Press, San Diego, pp 141–169

    Google Scholar 

  • Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5(4):300–307

    Article  CAS  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69(12):7343–7353

    Article  CAS  Google Scholar 

  • Yeoman MM, Yeoman CL (1996) Tansley Review No. 90. Manipulating secondary metabolism in cultured plant cells. New Phytol 1:553–569

    Article  Google Scholar 

  • Zafari S, Sharifi M, Chashmi NA, Mur LA (2016) Modulation of Pb-induced stress in Prosopis shoots through an interconnected network of signaling molecules, phenolic compounds and amino acids. Plant Physiol Biochem 99:11–20

    Article  CAS  Google Scholar 

  • Zaprometov MN (1992) On the functional role of phenolic compounds in plants. Fiziologiya rastenij (Russian Federation)

    Google Scholar 

  • Zheng X, Tan DX, Allan AC, Zuo B, Zhao Y, Reiter RJ, Wang L, Wang Z, Guo Y, Zhou J, Shan D (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci Rep 7(1):1–2

    Google Scholar 

  • Zhou P, Li Q, Liu G, Xu N, Yang Y, Zeng W, Chen A, Wang S (2019) Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress. Funct Plant Biol 46(1):30–43

    Article  CAS  Google Scholar 

  • Zucker M (1965) Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiol 40(5):779–784

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, U.N. et al. (2023). Plant Phenolics: As Antioxidants and Potent Compounds Under Multiple Stresses. In: Lone, R., Khan, S., Mohammed Al-Sadi, A. (eds) Plant Phenolics in Abiotic Stress Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-6426-8_11

Download citation

Publish with us

Policies and ethics