Skip to main content

An Explainable AI Solution: Exploring Extended Reality as a Way to Make Artificial Intelligence More Transparent and Trustworthy

  • 296 Accesses

Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Machine Learning (ML) and Artificial Intelligence (AI) have not only transformed the way we work (i.e. how we integrate information, analyse data, and how we make decisions) but also how organisations operate (i.e. adding new business processes and services etc.). In fact, many private, public and even third sector organisations are now capitalising on the true value of having systems that can learn on their own without any human intervention. However, with these benefits also come challenges regarding project productivity and collaboration. In detail, the need to explain how these systems work and how organisations interpret their output to achieve transparency and trust. This paper details the potential of using Extended reality (XR) as a way for enabling Explainable AI (XAI) focusing on the design and development of a novel XAI XR solution. The paper also highlights the ‘positive’ responses from an initial solution evaluation study noting participant’s impressions of the solution. It then makes recommendations for further research and development into the effectiveness of XR for explainable AI.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Columbus, L.: 76 percent of enterprises prioritize ai & machine learning in 2021 it budgets (2021). https://www.forbes.com/sites/louiscolumbus/2021/01/17/76-of-enterprises-prioritize-ai--machine-learning-in-2021-it-budgets/?sh=1fef3f68618a

  2. dotscience: Dotscience survey report 2019 (2019)

    Google Scholar 

  3. Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., Yang, G.Z.: Xai-explainable artificial intelligence. Sci. Robot. 4 (2019)

    Google Scholar 

  4. Everett, C.: Extended reality software gets pandemic lift (2020). https://www.computerweekly.com/feature/Extended-Reality-software-gets-pandemic-lift

  5. Alsop, T.: Extended reality (xr): Ar, vr, and mr - statistics & facts | statista (2022). https://www.statista.com/topics/6072/extended-reality-xr/

  6. von Eschenbach, W.J.: Transparency and the black box problem: why we do not trust ai. Philos. Technol. 34 (2021)

    Google Scholar 

  7. Shipley, V.: Thinking outside the black box: explainable ai is coming into focus-lexology (2020). https://www.lexology.com/library/detail.aspx?g=89db8afd-3c53-46bf-8ddd-5ece5408219f

  8. Sartor, G., Lagioia, F.: The impact of the general data protection regulation (gdpr) on artificial intelligence (2020)

    Google Scholar 

  9. Lundberg, S.: Welcome to the shap documentation—shap latest documentation (2018). https://shap.readthedocs.io/en/latest/index.html

  10. Kidwai, A.: Lessons from onboarding over 100,000 employees during the pandemic | fortune (2021). https://fortune.com/2021/10/12/lessons-from-onboarding-over-100000-employees-during-the-pandemic/

  11. Engage: Home | engage metaverse platform (2022). https://engagevr.io/

  12. MeetinVR: Meetinvr—business meetings & collaboration in vr (2022). https://www.meetinvr.com/

  13. Bravo, A., Maier, A.M.: Immersive visualisations in design: using augmented reality (ar) for information presentation. 1 (2020)

    Google Scholar 

  14. Wiberg, A.H., Lovhaug, S., Mathisen, M., Tschoerner, B., Resch, E., Erdt, M., Prasolova-Forland, E.: Visualisation of kpis in zero emission neighbourhoods for improved stakeholder participation using virtual reality. 323 (2019)

    Google Scholar 

  15. Lan, Y.J.: Immersion, interaction, and experience-oriented learning: bringing virtual reality into fl learning. Language Learn. Technol. 24 (2020)

    Google Scholar 

  16. Hudson, S., Matson-Barkat, S., Pallamin, N., Jegou, G.: With or without you? Interaction and immersion in a virtual reality experience. J. Bus. Res. 100 (2019)

    Google Scholar 

  17. Li, J., Vinayagamoorthy, V., Williamson, J., Shamma, D.A., Cesar, P.: Social vr: a new medium for remote communication and collaboration (2021)

    Google Scholar 

  18. Gordon, W.: How to reduce motion sickness in virtual reality | wired (2021). https://www.wired.com/story/how-to-reduce-motion-sickness-virtual-reality/

  19. Hutton, C., Ziccardi, S., Medina, J., Rosenbarg, E.S.: Please don’t puke: early detection of severe motion sickness in vr (2018)

    Google Scholar 

  20. Forsyth, T.: Vr sickness, the rift, and how game developers can help (2013). https://developer.oculus.com/blog/vr-sickness-the-rift-and-how-game-developers-can-help/

  21. Chandar, V.: Metaverse: opportunities for investors today | morgan stanley (2021). https://www.morganstanley.com/articles/metaverse-opportunities-virtual-reality-augmented-reality-technologies

  22. Richardson, C., Rymer, J.R., Mines, C., Cullen, A., Whittaker, D.: New Development Platforms Emerge for Customer-Facing Applications. Forrester, Cambridge, MA, USA (2014)

    Google Scholar 

  23. Sahay, A., Indamutsa, A., Ruscio, D.D., Pierantonio, A.: Supporting the understanding and comparison of low-code development platforms (2020)

    Google Scholar 

  24. Seshadri, R.: Github—autoviml/autoviz: automatically visualize any dataset, any size with a single line of code. Created by ram seshadri. collaborators welcome. permission granted upon request (2021). www.github.com/AutoViML/AutoViz

  25. Kanz, A.: Welcome to klib’s documentation!—klib 0.1.5 documentation (2021). https://klib.readthedocs.io/en/latest/

  26. Bertrand, F.: Github—fbdesignpro/sweetviz: visualize and compare datasets, target values and associations, with one line of code (2021). https://github.com/fbdesignpro/sweetviz

  27. Brugman, S.: Github—ydataai/pandas-profiling: create html profiling reports from pandas dataframe objects (2021). https://github.com/ydataai/pandas-profiling

  28. Navas-Palencia, G.: Optbinning: the python optimal binning library—optbinning 0.13.1 documentation (2022). http://gnpalencia.org/optbinning/

  29. Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, C.B., Farivar, R.: Towards automated machine learning: evaluation and comparison of automl approaches and tools, vol. 2019 (2019)

    Google Scholar 

  30. PyCaret: Home—pycaret (2022). https://pycaret.org/

  31. scikit-yb developers: Yellowbrick: machine learning visualization—yellowbrick v1.3.post1 documentation (2019). https://www.scikit-yb.org/en/latest/

  32. Streamlit: Streamlit—the fastest way to build and share data apps (2022). https://streamlit.io/

  33. scikit-learn developers: scikit-learn: machine learning in python—scikit-learn 1.0.2 documentation (2021). https://scikit-learn.org/stable/

  34. Markowitz, D.M., Laha, R., Perone, B.P., Pea, R.D., Bailenson, J.N.: Immersive virtual reality field trips facilitate learning about climate change. Front. Psychol. 9 (2018)

    Google Scholar 

  35. Wang, A., Thompson, M., Uz-Bilgin, C., Klopfer, E.: Authenticity, interactivity, and collaboration in virtual reality games: best practices and lessons learned. Front. Virtual Real. 2 (2021)

    Google Scholar 

  36. Salanitri, D., Lawson, G., Waterfield, B.: Enhancing trust in virtual reality systems (2020)

    Google Scholar 

  37. Hvass, J., Larsen, O., Vendelbo, K., Nilsson, N., Nordahl, R., Serafin, S.: Visual realism and presence in a virtual reality game, vol. 2017 (2018)

    Google Scholar 

  38. Bootstrap. Bootstrap—the most popular html, css, and js library in the world (2022). https://getbootstrap.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Wheeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wheeler, R., Carroll, F. (2023). An Explainable AI Solution: Exploring Extended Reality as a Way to Make Artificial Intelligence More Transparent and Trustworthy. In: Onwubiko, C., et al. Proceedings of the International Conference on Cybersecurity, Situational Awareness and Social Media. Springer Proceedings in Complexity. Springer, Singapore. https://doi.org/10.1007/978-981-19-6414-5_15

Download citation