Skip to main content

Implications of Mulching on Weed Management in Crops and Vegetable

  • Chapter
  • First Online:
Mulching in Agroecosystems

Abstract

Global efforts are being made to reduce the world's high reliance on synthetic herbicides for weed control to protect human health and the environment and avoid the outbreak of weeds in various crops. Concerning the adverse effects on humans and the environment of the use of herbicides, a fair and cautious approach to restricting or even stopping the use of agrochemical products must be envisaged. Several methods provide information on agroecological activities in this context, such as mulching, which can contribute to the sustainable management of weeds in various field crops worldwide. In organic farming, mulching, by providing a barrier to sun, heat, or moisture exchange, is helpful as one strategy for integrated weed control. Evaporation is minimized, moisture is retained, and structure and temperature are controlled. On the other hand, the Mulching practice has many benefits, such as improving soil structure and texture by increasing infiltration and water retention and providing many insects and earthworms with a refuge. In addition, it promotes root penetration and growth and thus can also minimize erosion through nutrient uptake from deeper soil layers. Mulches control weeds by keeping the surface of the soil from receiving sunlight as light is needed for some weeds to germinate, and even necessary for all green plants to grow. Therefore, Mulches can be the best choice to control weeds in the field and reduce dependence on synthetic herbicides for weed control to prevent weeds’ germination in various agronomic crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczewska-Sowinska, K., Kolota, E., & Winiarska, S. (2009). Living mulches in field cultivation of vegetables. Vegetable Crops Research Bulletin, 70(1), 19–29.

    Google Scholar 

  • Ahmad, S., Raza, M. A. S., Saleem, M. F., Zaheer, M. S., Iqbal, R., Haider, I., Aslam, M. U., Ali, M., & Khan, I. H. (2020). Significance of partial root zone drying and mulches for water saving and weed suppression in wheat. Journal of Animal and Plant Sciences, 30, 154–162.

    Google Scholar 

  • Ahmad, S., Raza, M. A. S., Saleem, M. F., Zahra, S. S., Khan, I. H., & Ali, M. (2015). Mulching strategies for weeds control and water conservation in cotton. Journal of Agricultural and Biological Sciences, 8, 299–306.

    Google Scholar 

  • Arnold, G. L., Luckenbach, M. W., & Unger, M. A. (2004). Runoff from tomato cultivation in the estuarine environment: Biological effects of farm management practices. Journal of Experimental Marine Biology and Ecology, 298(2), 323–346.

    Article  Google Scholar 

  • Avola, G., Tuttobene, R., Gresta, F., & Abbate, V. (2008). Weed control strategies for grain legumes. Agronomy for Sustainable Development, 28, 389–395.

    Article  Google Scholar 

  • Bedford, H. A. R., & Pickering, P. S. U. (1919). Science and fruit growing: Being an account of the results obtained at the woburn experimental fruit farm since its foundation in 1894 Macmillan.

    Google Scholar 

  • Bezuidenhout, S. R., Reinhardt, C. F., & Whitwell, M. I. (2012). Cover crops of oats stooling rye and three annual ryegrass cultivars influence maize and Cyperus esculentus growth. Weed Research, 52, 153–160.

    Article  CAS  Google Scholar 

  • Bhoutekar, S., Luchon, S., Bonti, G., & Sonbeer, C. (2017). Fertigation level and mulching in Cauliflower (Brassica oleraceae L. var. botrytis) cv. Snowball White. International Journal of Agriculture Sciences, 9, 4226–4228.

    Google Scholar 

  • Bilck, A. D., Grossmann, M. V. E., & Yamashita, F. (2010). Biodegradable mulch films for strawberry production. Polymer Testing, 29, 471–476.

    Article  CAS  Google Scholar 

  • Blanco-Canqui, H., Shaver, T. M., Lindquist, J., Shapiro, C. A., & Elmore, R. W. (2015). Cover crops and ecosystem services: Insights from studies in temperate soils. Agronomy & Horticultural Faculty Publication, 844, 1–15.

    Google Scholar 

  • Blum, U. (1997). Benefits of citrate over EDTA for extracting phenolic acids from soils and plant debris. Journal of Chemical Ecology, 23, 347–362.

    Article  CAS  Google Scholar 

  • Bond, W., & Grundy, A. C. (2001). Non-chemical weed management in organic farming systems. Weed Research, 41, 383–405.

    Article  Google Scholar 

  • Borst, H. L., & Woodburn, R. (1942). The effect of mulching and methods of cultivation on runoff and erosion from Muskingham silt loam. Journal of Agricultural Engineering, 23, 19–22.

    Google Scholar 

  • Brennan, E. B., & Smith, R. F. (2018). Mustard cover crop growth and weed suppression in organic strawberry furrows in California. HortScience, 53, 432–440.

    Article  Google Scholar 

  • Brust, J., Claupein, W., & Gerhards, R. (2014). Growth and weed suppression ability of common and new cover crops in Germany. Crop Protect, 63, 1–8.

    Article  Google Scholar 

  • Brust, J., Gerhards, R., Karanisa, T., Ruff, L., & Kipp, A. (2011). Why under sown and cover crops become important again for weed suppression in European cropping systems. Gesunde Pflanzen, 63, 191–198.

    Article  Google Scholar 

  • Burgos, N. R., & Talbert, R. E. (2000). Differential activity of allelochemicals from Secale cereale in seedling bioassays. Weed Science, 48, 302–310.

    Article  CAS  Google Scholar 

  • Chauhan, B. S., & Abugho, S. B. (2013). Integrated use of herbicide and crop mulch in suppressing weed growth in a dry-seeded rice system. American Journal of Plant Sciences, 4, 1611–1616.

    Article  CAS  Google Scholar 

  • Chopra, M., & Koul, B. (2020). Comparative assessment of different types of mulching in various crops: A review. Plant Archives, 20, 1620–1626.

    Google Scholar 

  • Clifford, E. D., & Massello, J. W. (1965). Mulching materials for nursery seedbeds. Tree Planters Notes, 72, 18–22.

    Google Scholar 

  • Creamer, N. G., Bennett, M. A., Stinner, B. R., Cardina, J., & Regnier, E. E. (1996). Mechanisms of weed suppression in cover crop-based production systems. Hortscience, 31, 410–413.

    Article  Google Scholar 

  • DiTomaso, J., Kyser, G., Lewis, D., & Roncoroni, J. (2017). Conventional and organic options for the control of woolly distaff thistle (Cathamus lana- tus). Invasive Plant Science and Management, 10, 72–79.

    Article  Google Scholar 

  • Ehlert, K. A., Mangold, J. M., & Engel, R. E. (2014). Integrating the herbicide imazapic and the fungal pathogen Pyrenophora semeniperda to control Bromus tectorum. Weed Research, 54, 418–424.

    Article  CAS  Google Scholar 

  • Falquet, B., Gfeller, A., Pourcelot, M., Tschuy, F., & Wirth, J. (2015). Weed suppression by common buckwheat: A review. Environmental Control in Biology, 53(1), 1–6.

    Article  CAS  Google Scholar 

  • Gfeller, A., Herrera, J. M., Tschuy, F., & Wirth, J. (2018). Explanations for Amaranthus retroflexus growth suppression by cover crops. Crop Protection, 104, 11–20.

    Article  Google Scholar 

  • Grillo, R., SPereira, A. E., de Melo, N. F. S., Porto, R. M., Feitosa, L. O., Tonello, P. S., Filho, N. D., Rosa, A. H., Lima, R., & Fraceto, L. F. (2011). Controlled release system for ametryn using polymer microspheres: Preparation characterization and release kinetics in water. The Journal of Hazardous Materials, 186, 1645−1651.

    Google Scholar 

  • Hakkarainen, M., & Albertsson, A. C. (2004). Environmental degradation of polyethylene. Advances in Polymer Science, 169, 177–200.

    Article  CAS  Google Scholar 

  • Hartwig, N. L., & Ammon, H. U. (2002). Cover crops and living mulches. Weed Science, 50(6), 688–699.

    Article  CAS  Google Scholar 

  • Hussain, I., & Hamid, H. (2003). Plastics in agriculture. In A. L. Andrady (Ed.), Plastic and the Environment (pp. 185–206). Wiley.

    Google Scholar 

  • Iqbal, R., Muhammad, A. S. R., Muhammad, F. S., Imran, H. K., Salman, A., Muhammad, S. Z., Muhammad, U., & Imran, H. (2019). Physiological and biochemical appraisal for mulching and partial rhizosphere drying of cotton. Journal of Arid Land, 11, 785–794.

    Article  Google Scholar 

  • Iqbal, R., Raza, M. A. S., Valipour, M., Saleem, M. F., Zaheer, M. S., Ahmad, S., Toleikiene, M., Haider, I., Aslam, M. U., & Nazar, M. A. (2020). Potential agricultural and environmental benefits of mulches—a review. Bulletin of the National Research Centre, 44(1), 1–16.

    Google Scholar 

  • Jaysawal, N., Singh, G., Kanojia, A., & Debbarma, B. (2018). Effect of different mulches on growth and yield of carrot (Daucus carota L.). International Journal of Chemical Studies6(4), 381–384.

    Google Scholar 

  • Kader, M. A., Singha, A., Begum, M. A., Jewel, A., Khan, F. H., & Khan, N. I. (2019). Mulching as water-saving technique in dry land agriculture. Bulletin of the National Research Centre, 43, 1–6.

    Article  Google Scholar 

  • Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: A review. Agronomy for Sustainable Development, 32(2), 501–529.

    Article  CAS  Google Scholar 

  • Kosterna, E. (2014). The effect of soil mulching with organic mulches on weed infestation in broccoli and tomato cultivated under polypropylene fibre and without a cover. Journal of Plant Protection Research, 54, 188–198.

    Article  Google Scholar 

  • Kruidof, H. M., Bastiaans, L., & Kropff, M. J. (2008). Ecological weed management by cover cropping: Effects on weed growth in autumn and weed establishment in spring. Weed Research, 48, 492–502.

    Article  Google Scholar 

  • Kumar, B. R. M., & Angadi, S. S. (2016). Effect of tillage mulching and weed management practices on the performance and economics of chickpea. Legume Research, 39, 786–791.

    Google Scholar 

  • Kumar, P., Kumar, S., Kumari, M., & Kumar, V. (2019). Effect of mulching on brinjal cultivation. International Journal of Science, Environment and Technology, 8(3), 624–629.

    Google Scholar 

  • Kunz, C. D., Sturm, J., Varnholt, D., Walker, F., & Gerhards, R. (2016). Allelopathic effects and weed suppressive ability of cover crops. Plant, Soil and Environment, 62, 60–66.

    Article  Google Scholar 

  • Lamont, W. J. (2005). Plastics: Modifying the microclimate for the production of vegetable crops. Horticultural Technology, 15, 477–481.

    Google Scholar 

  • Larentzaki, E., Plate, J., Nault, B. A., & Shelton, A. M. (2008). Impact of straw mulch on populations of onion thrips (Thysanoptera: Thripidae) in onion. Journal of Economic Entomology, 101(4), 1317–1324.

    Article  CAS  PubMed  Google Scholar 

  • Lawley, Y. E., Weil, R. R., & Teasdale, J. R. (2011). Forage radish cover crop suppresses winter annual weeds in fall and before corn planting. Agronomy Journal, 103, 137–144.

    Article  Google Scholar 

  • Lightfoot, D. R. (1994). Morphology and ecology of lithic-mulch agriculture. Geography Review, 25, 172–185.

    Article  Google Scholar 

  • Mehetre, Y. D., Pawar, R. D., Mangave, K. K., Sonawane, P. N., & Dhumal, S. S. (2018). Effects of different mulches on the yield and productivity of drip irrigated chilli cv. Phule Jyoti. Trends in Biosciences Dheerpura Society for Advancement of Science and Rural Development An International Journal, 2726.

    Google Scholar 

  • Melander, B., & Rasmussen, G. (2001). Effects of cultural methods and physical weed control on intrarow weed numbers manual weeding and marketable yield in direct-sown leek and bulb onion. Weed Research, 41, 491–508.

    Google Scholar 

  • Minuto, G., Pisi, L., Tinivella, F., Bruzzone, C., Guerrini, S., Versari, M., Pini, S., & Capurro, M. (2008). Weed control with biodegradable mulch in vegetable crops. Acta Horticulture, 801, 291–298.

    Article  Google Scholar 

  • Moonen, A. C., & Bàrberi, P. (2004). Size and composition of the weed seedbank after 7 years of different cover crop maize management systems. Weed Research, 44, 163–177.

    Article  Google Scholar 

  • Moonen, A. C., & Bàrberi, P. (2006). An ecological approach to study the physical and chemical effects of rye cover crop residues on Amaranthus retroflexus Echinochloa crus-galli and maize. The Annals of Applied Biology, 148, 73–89.

    Article  CAS  Google Scholar 

  • Najafabadi, M., Peyvast, G. H., Hassanpour, A. M., Olfati, J. A., & Rabiee, M. (2012). Mulching effects on the yield and quality of garlic as second crop in rice fields.

    Google Scholar 

  • Nalayini, P. (2007). Poly-mulching a case study to increase cotton productivity. Senior scientist Central Institute for Cotton Research Regional Station Coimbatore.

    Google Scholar 

  • Ngouajio, M., & McGiffen, M. E. (2004). Sustainable vegetable production: Effects of cropping systems on weed and insect population dynamics. Acta Horticulture, 638, 77–83.

    Article  Google Scholar 

  • Osipitan, O. A., Dille, J. A., Assefa, Y., & Knezevic, S. Z. (2018). Cover crop for early season weed suppression in crops: Systematic review and meta-analysis. Agronomy Journal, 110, 2211–2221.

    Article  Google Scholar 

  • Ozores-Hampton, M. (1998). Compost as an alternative weed control method. HortScience, 33, 938–940.

    Article  Google Scholar 

  • Paine, L. K., & Harrison, H. (1993). The historical roots of living mulch and related practices. HortTechnology, 3, 137–143.

    Article  Google Scholar 

  • Pannacci, E., & Tei, F. (2014). Effects of mechanical and chemical methods on weed control weed seed rain and crop yield in maize sunflower and soybean. Crop Protection, 64, 51–59.

    Article  CAS  Google Scholar 

  • Pirone, P. P. (1941). Freak weather damages trees and shrubs. New Jersey Agriculture, 23, 3.

    Google Scholar 

  • Pupalienė, R., Sinkevičienė, A., Jodaugienė, D., & Bajorienė, K. (2015). Weed control by organic mulch in organic farming system. In V. Pilipavicius (Ed.), Weed biology and control (pp. 65–86). InTech.

    Google Scholar 

  • Radics, L. E., & Bognár, S. (2004). Comparison of different mulching methods for weed control in organic green bean and tomato. Acta Horticulturae, 638, 189–196.

    Article  Google Scholar 

  • Ramakrishna, A., Tam, H. M., Wani, S. P., & Long, T. D. (2006). Effect of mulch on soil temperature moisture weed infestation and yield of groundnut in northern Vietnam. Field Crops Research, 95, 115–125.

    Article  Google Scholar 

  • Rathore, A. L., Pal, A. R., & Sahu, K. K. (1998). Tillage and mulching effects on water use root growth and yield of rain-fed mustard and chickpea grown after lowland rice. Journal of the Science of Food and Agriculture, 78, 149–161.

    Article  CAS  Google Scholar 

  • Rice, P. J., Harman-Fetcho, J. A., Teasdale, J. R., Sadeghi, A. M., McConnell, L. L., Coffman, C. B., Herbert, R. R., Heighton, L. P., & Hape-man, C. J. (2004). Use of vegetative furrows to mitigate copper loads and soil loss in runoff from polyethylene (plastic) mulch vegetable production systems. Environmental Toxicology and Chemistry, 23(3), 719–725.

    Article  CAS  PubMed  Google Scholar 

  • Robb, D., Zehnder, G., Kloot, R., & Bridges, W. (2018). Weeds nitrogen and yield: Measuring the effectiveness of an organic cover cropped vegetable no-till system. Renewable Agricultural and Food Systems, 34, 439–446.

    Article  Google Scholar 

  • Rueda-Ayala, V., Jäck, O., & Gerhards, R. (2015). Investigation of biochemical and competitive effects of cover crops on crops and weeds. Crop Protection, 72, 79–87.

    Article  Google Scholar 

  • Sánchez-Moreiras, A. M., Weiss, O. A., Reigosa-Roger, M. J. (2003). Allelopathic evidence in the Poaceae. Botanical Review, 69, 300–319.

    Google Scholar 

  • Sarrantonio, M. (1992). Opportunities and challenges for the inclusion of soil-improving crops in vegetable production systems. HortScience, 27, 754–758.

    Article  Google Scholar 

  • Singh, S. B., Pramod, K., Prasad, K. G., & Kumar, P. (1991). Response of Eucalyptus to organic manure mulch and fertilizer sources of nitrogen and phosphorus. VanVig, 29, 200–207.

    Google Scholar 

  • Sintim, H. Y., & Flury, M. (2017). Is biodegradable plastic mulch the solution to agriculture’s plastic problem? Environmental Science and Technology, 51, 1068–1069.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M. W. (2000). Cultivar and mulch affect cold injury of young pecan trees. Journal of American Pomological Society, 54, 29–33.

    Google Scholar 

  • Snapp, S. S., Swinton, S. M., Labarta, R., Mutch, D., Black, J. R., Leep, R., Nyiraneza, J., & O’Neil, K. (2005). Evaluating cover crops for benefits costs and performance within cropping system niches. Agronomy Journal, 97(1), 322–332.

    Article  Google Scholar 

  • Steinmetz,Z., Wollmann, C., Schaefer, M., Buchmann, C., David, J., Tröger, J., Muñoz, K., Frör, O., Schaumann, G. E. (2016). Plastic mulching in agriculture Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment, 550, 690–705.

    Google Scholar 

  • Stepanovic, S., Datta, A., Neilson, B., Bruening, C., Shapiro, C. A., Gogos, G., & Knezevic, S. Z. (2016). Effectiveness of flame weeding and cultivation for weed control in organic maize. Biological Agriculture & Horticulture, 32, 47–62.

    Article  Google Scholar 

  • Sturm, D., Peteinatos, G., & Gerhards, R. (2017). Contribution of allelopathic effects to the overall weed suppression by different cover crops. Weed Research, 58, 331–337.

    Article  Google Scholar 

  • Sturm, D. J., Kunz, C., & Gerhards, R. (2016). Inhibitory effects of cover crop mulch on germination and growth of Stellaria media (L) Vill Chenopodium album L and Matricaria chamomilla L. Crop Protection, 90, 125–131.

    Article  Google Scholar 

  • Tarara, J. M. (2000). Microclimate modification with plastic mulch. HortScience, 35, 169–180.

    Article  Google Scholar 

  • Teasdale, J. R. (1996). Contribution of cover crops to weed management in sustainable agricultural systems. Journal of Production Agriculture, 9, 475–479.

    Article  Google Scholar 

  • Tu, C., Ristaino, J. B., & Hu, S. (2006). Soil microbial biomass and activity in organic tomato farming systems: Effects of organic inputs and straw mulching. Soil Biology and Biochemistry, 38(2), 247–255.

    Article  CAS  Google Scholar 

  • Upadhyaya, M., & Blackshaw, R. (2007). Non-chemical weed management: Principles concepts and technology. CABI Publishing Cambridge.

    Google Scholar 

  • Vasileiadis, V. P., Froud-Williams, R. J., & Eleftherohorinos, I. G. (2012). Tillage and herbicide treatments with inter-row cultivation influence weed densities and yield of three industrial crops. Weed Biology and Management, 12, 84–90.

    Article  Google Scholar 

  • Wagner, M., & Mitschunas, N. (2008). Fungal effects on seed bank persistence and potential applications in weed biocontrol: A review. Basic and Applied Ecology, 9, 191–203.

    Article  Google Scholar 

  • Wan, Y., & El-Swaify, S. A. (1999). Runoff and soil erosion as affected by plastic mulch in a Hawaiian pineapple field. Soil and Tillage Research, 52(1–2), 29–35.

    Article  Google Scholar 

  • Wang, F. X., Feng, S. Y., Hou, X. Y., Kang, S. Z., & Han, J. J. (2009). Potato growth with and without plastic mulch in two typical regions of Northern China. Field Crops Research, 110(2), 123–129.

    Article  Google Scholar 

  • Ward, M., Ryan, M., Curran, W., Barbercheck, M., & Mortensen, D. (2011). Cover crops and disturbance influence activity-density of weed seed pred- ators Amara aenea and Harpalus pensylvanicus (Coleoptera: Carabidae). Weed Science, 59, 76–81.

    Article  CAS  Google Scholar 

  • Wei, D., Liping, C., Zhijun, M., Guangwei, W., & Ruirui, Z. (2010). Review of non-chemical weed management for green agriculture. International Journal of Agricultural Biology Engineering, 3, 52–60.

    Google Scholar 

  • Zaniewicz-Bajkowska, A., Franczuk, J., & Kosterna, E. (2009). Direct and secondary effects of soil mulching with straw on fresh mass and number of weeds vegetable yield. Polish Journal of Environmental Studies, 18, 1185–1190.

    Google Scholar 

  • Zhang, Y., Liu, M., Dannenmann, M., Tao, Y., Yao, Z., Jing, R., Zheng, X., Butterbach-Bahl, K., & Lin, S. (2017). Benefit of using biodegradable film on rice grain yield and N use efficiency in ground cover rice production system. Field Crops Research, 201, 52–59.

    Article  CAS  Google Scholar 

  • Zimdahl, R. (2015). Six Chemicals That Changed Agriculture (p. 216), First edn. Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ishfaq Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, B.A. et al. (2022). Implications of Mulching on Weed Management in Crops and Vegetable. In: Akhtar, K., Arif, M., Riaz, M., Wang, H. (eds) Mulching in Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-19-6410-7_13

Download citation

Publish with us

Policies and ethics