Skip to main content

Nature-Inspired Computing: Scope and Applications of Artificial Immune Systems Toward Analysis and Diagnosis of Complex Problems

  • Chapter
  • First Online:
Nature-Inspired Intelligent Computing Techniques in Bioinformatics

Abstract

The interdisciplinary field of nature-inspired computing is a combination of combining nature computing science of biology, chemistry, physics, engineering, and mathematics which allows the development of new computational hardware, algorithms, or wetware for diagnosing, problem-solving, behaviors of organisms, and synthesis of patterns. Artificial immune systems (AIS) are a sub-field of biologically-inspired computing through machine learning and artificial intelligence (AI). AIS is new algorithm developed from the principles of the human immune system. The AIS is conceptualizing the structure and function of the immune system to computational systems and investigating the applications of the immune system toward solving computational problems. AIS is a dynamic research area used for fault detection, diagnosis, optimization problems, and various approaches to AIS have wide applications. In this chapter, we made anĀ attempt to describe the role of AIS in data analysis and providing solutions for complex diagnostic problems.

Authors K. R. Dasegowda, Akshar Radhakrishnan, and Majji Rambabu contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aldhaheri S, Alghazzawi D, Cheng L, Alzahrani B, Al-Barakati A (2020) Deepdca: novel network-based detection of IoT attacks using artificial immune system. Appl Sci 10(6):1909

    ArticleĀ  Google ScholarĀ 

  • Al-Enezi JR, Abbod MF, Alsharhan S (2011) Artificial immune systems-models, algorithms and applications

    Google ScholarĀ 

  • Alizadeh E, Meskin N, Khorasani K (2016) A negative selection immune system inspired methodology for fault diagnosis of wind turbines. IEEE Trans Cybern 47(11):3799ā€“3813

    ArticleĀ  Google ScholarĀ 

  • Almufti SM (2019) Historical survey on metaheuristics algorithms. International Journal of Scientific World. 7(1):1

    ArticleĀ  Google ScholarĀ 

  • Ariff NM, Khalid NE, Hashim R, Noor NM (2016) Selfish gene algorithm versus genetic algorithm: a review. In: IOP conference series: materials science and engineering, vol 160, no 1. IOP Publishing, p 012098

    Google ScholarĀ 

  • Bayar N, Darmoul S, Hajri-Gabouj S, Pierreval H (2015) Fault detection, diagnosis and recovery using artificial immune systems: a review. Eng Appl Artif Intell 1(46):43ā€“57

    ArticleĀ  Google ScholarĀ 

  • Brabazon A, Oā€™Neill M, McGarraghy S (2015) Artificial immune systems. In: Natural computing algorithms. Springer, Berlin, Heidelberg, pp 301ā€“332

    Google ScholarĀ 

  • De Castro LN, Von Zuben FJ (2000) The clonal selection algorithm with engineering applications. In: Proceedings of GECCO, vol 2000, pp 36ā€“39

    Google ScholarĀ 

  • Chen H, Zhang Q, Luo J, Xu Y, Zhang X (2020) An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine. Appl Soft Comput 1(86):105884

    ArticleĀ  Google ScholarĀ 

  • Chiroma H, Herawan T, Fister I Jr, Fister I, Abdulkareem S, Shuib L, Hamza MF, Saadi Y, Abubakar A (2017) Bio-inspired computation: Recent development on the modifications of the cuckoo search algorithm. Appl Soft Comput 1(61):149ā€“173

    ArticleĀ  Google ScholarĀ 

  • Ƈipe F, Arısoy ES, Correa AG (2022) Immunological Responses to Infection. In: Pediatric ENT infections. Springer, Cham, pp 3ā€“17

    Google ScholarĀ 

  • Daudi J (2015) An overview of application of artificial immune system in swarm robotic systems. Adv Robot Autom 4(1)

    Google ScholarĀ 

  • De Lacerda MG, de Araujo Pessoa LF, de Lima Neto FB, Ludermir TB, Kuchen H (2021) A systematic literature review on general parameter control for evolutionary and swarm-based algorithms. Swarm Evol Comput 1(60):100777

    ArticleĀ  Google ScholarĀ 

  • FalcĆ³n-Cardona JG, Coello CA (2020) Indicator-based multi-objective evolutionary algorithms: a comprehensive survey. ACM Comput Surveys (CSUR) 53(2):1ā€“35

    ArticleĀ  Google ScholarĀ 

  • Fan X, Sayers W, Zhang S, Han Z, Ren L, Chizari H (2020) Review and classification of bio-inspired algorithms and their applications. J Bionic Eng 17(3):611ā€“631

    ArticleĀ  Google ScholarĀ 

  • Fernandez-Leon JA, Acosta GG, Rozenfeld A (2014) How simple autonomous decisions evolve into robust behaviours?: a review from neurorobotics, cognitive, self-organized and artificial immune systems fields. Biosystems 1(124):7ā€“20

    ArticleĀ  Google ScholarĀ 

  • Gendreau M, Potvin JY (eds) (2010) Handbook of metaheuristics. Springer, New York

    MATHĀ  Google ScholarĀ 

  • Greensmith J, Aickelin U, Tedesco G (2010) Information fusion for anomaly detection with the dendritic cell algorithm. Inf Fusion 11(1):21ā€“34

    ArticleĀ  Google ScholarĀ 

  • Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336(6086):1268ā€“1273

    Google ScholarĀ 

  • Ishida Y (1990) Fully distributed diagnosis by PDP learning algorithm: towards immune network PDP model. In: 1990 IJCNN international joint conference on neural networks. IEEE, pp 777ā€“782

    Google ScholarĀ 

  • Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343ā€“353

    ArticleĀ  Google ScholarĀ 

  • Jegadeeshwaran R, Sugumaran V (2015) Brake fault diagnosis using clonal selection classification algorithm (CSCA)ā€”A statistical learning approach. Eng Sci Technol Int J 18(1):14ā€“23

    Google ScholarĀ 

  • Jim LE, Islam N, Gregory MA (2022) Enhanced MANET security using artificial immune system based danger theory to detect selfish nodes. Comput Secur 1(113):102538

    ArticleĀ  Google ScholarĀ 

  • Kar AK (2016) Bio inspired computingā€”A review of algorithms and scope of applications. Expert Syst Appl 15(59):20ā€“32

    ArticleĀ  Google ScholarĀ 

  • Kashani AR, Camp CV, Rostamian M, Azizi K, Gandomi AH (2021) Population-based optimization in structural engineering: a review. Artif Intell Rev 4:1ā€“08

    Google ScholarĀ 

  • Knight T, Timmis J (2001) AINE: an immunological approach to data mining. In: Proceedings 2001 IEEE international conference on data mining. IEEE Computer Society, pp 297ā€“297

    Google ScholarĀ 

  • Kogut MH, Lee A, Santin E (2020) Microbiome and pathogen interaction with the immune system. Poult Sci 99(4):1906ā€“1913

    ArticleĀ  Google ScholarĀ 

  • Li W, Wang GG (2021) Elephant herding optimization using dynamic topology and biogeography-based optimization based on learning for numerical optimization. Eng Comput 4:1ā€“29

    Google ScholarĀ 

  • Li G, Jin Y, Akram MW, Chen X, Ji J (2018) Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditionsā€”A review. Renew Sustain Energy Rev 1(81):840ā€“873

    ArticleĀ  Google ScholarĀ 

  • Liu J, Tsui KC (2006) Toward nature-inspired computing. Commun ACM 49(10):59ā€“64

    ArticleĀ  Google ScholarĀ 

  • Luo Q, Wang H, Zheng Y, He J (2020) Research on path planning of mobile robot based on improved ant colony algorithm. Neural Comput Appl 32(6):1555ā€“1566

    ArticleĀ  Google ScholarĀ 

  • Misaghi M, Yaghoobi M (2019) Improved invasive weed optimization algorithm (IWO) based on chaos theory for optimal design of PID controller. J Comput Des Eng 6(3):284ā€“295

    Google ScholarĀ 

  • Mohapatra S, Khilar PM (2020) Immune inspired fault diagnosis in wireless sensor network. In: Nature inspired computing for wireless sensor networks. Springer, Singapore, pp 103ā€“116

    Google ScholarĀ 

  • Molina D, Poyatos J, Ser JD, GarcĆ­a S, Hussain A, Herrera F (2020) Comprehensive taxonomies of nature-and bio-inspired optimization: Inspiration versus algorithmic behavior, critical analysis recommendations. Cogn Comput 12(5):897ā€“939

    ArticleĀ  Google ScholarĀ 

  • MĆ¼ller V, De Boer RJ, Bonhoeffer S, SzathmĆ”ry E (2018) An evolutionary perspective on the systems of adaptive immunity. Biol Rev 93(1):505ā€“528

    ArticleĀ  Google ScholarĀ 

  • Niu B, Wang H (2012) Bacterial colony optimization. Discrete Dyn Nat Soc

    Google ScholarĀ 

  • Nunoo-Mensah H, Boateng KO, Gadze JD (2018) The adoption of socio-and bio-inspired algorithms for trust models in wireless sensor networks: a survey. Int J Commun Syst 31(7):e3444

    ArticleĀ  Google ScholarĀ 

  • PĆ©rez J, Cabrera JA, Castillo JJ, Velasco JM (2018) Bio-inspired spiking neural network for nonlinear systems control. Neural Netw 1(104):15ā€“25

    ArticleĀ  MATHĀ  Google ScholarĀ 

  • Rostami M, Berahmand K, Nasiri E, Forouzandeh S (2021) Review of swarm intelligence-based feature selection methods. Eng Appl Artif Intell 1(100):104210

    ArticleĀ  Google ScholarĀ 

  • Sam-Yellowe TY, Sam-Yellowe TY (2021) Immunology: overview and laboratory manual. Springer

    Google ScholarĀ 

  • Siddique N, Adeli H (2015) Nature inspired computing: an overview and some future directions. Cogn Comput 7(6):706ā€“714

    ArticleĀ  Google ScholarĀ 

  • Somayaji A, Hofmeyr S, Forrest S (1998) Principles of a computer immune system. In: Proceedings of the 1997 workshop on new security paradigms, pp 75ā€“82

    Google ScholarĀ 

  • Theocharopoulou G, Giannakis K, Papalitsas C, Fanarioti S, Andronikos T (2019) Elements of game theory in a bio-inspired model of computation. In: 2019 10th International conference on information, intelligence, systems and applications (IISA). IEEE, pp 1ā€“4

    Google ScholarĀ 

  • Timmis J, Hone A, Stibor T, Clark E (2008) Theoretical advances in artificial immune systems. Theoret Comput Sci 403(1):11ā€“32

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  • Wang H, Wang W, Xiao S, Cui Z, Xu M, Zhou X (2020) Improving artificial bee colony algorithm using a new neighborhood selection mechanism. Inf Sci 1(527):227ā€“240

    MathSciNetĀ  Google ScholarĀ 

  • Yadav A, Vishwakarma DK (2020) A comparative study on bio-inspired algorithms for sentiment analysis. Clust Comput 23(4):2969ā€“2989

    ArticleĀ  Google ScholarĀ 

  • Zedadra O, Guerrieri A, Jouandeau N, Spezzano G, Seridi H, Fortino G (2018) Swarm intelligence-based algorithms within IoT-based systems: a review. J Parallel Distrib Comput 1(122):173ā€“187

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Abdul Kareem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dasegowda, K.R. et al. (2023). Nature-Inspired Computing: Scope and Applications of Artificial Immune Systems Toward Analysis and Diagnosis of Complex Problems. In: Raza, K. (eds) Nature-Inspired Intelligent Computing Techniques in Bioinformatics. Studies in Computational Intelligence, vol 1066. Springer, Singapore. https://doi.org/10.1007/978-981-19-6379-7_8

Download citation

Publish with us

Policies and ethics