Skip to main content

Post-spinel Transition in AB2O4

  • Chapter
  • First Online:
High-Pressure Silicates and Oxides

Part of the book series: Advances in Geological Science ((AGS))

  • 417 Accesses

Abstract

Spinel-structured minerals with AB2O4 stoichiometry occur in various rocks in the crust and the upper mantle. In this chapter, high-pressure phase transitions of various AB2O4 compounds are discussed. The high-pressure phases of spinel-type AB2O4, called “post-spinel phases”, have generally CaFe2O4-, CaTi2O4- and CaMn2O4-type structures. All the structures consist of double chains of edge-sharing BO6 octahedra, and the four double chains form tunnel-like spaces in which relatively large A cations are accommodated. Stability of CaFe2O4- and CaTi2O4-type AB2O4 compounds are discussed in terms of cation radii. Hollandite-type phases and hexagonal aluminous (NAL) phases have structures related with the post-spinel structures. Aluminosilicates with the hollandite-type and NAL phases can accommodate relatively large cations such as Na+ and K+, and are known as major phases in basaltic crust and continental crust materials subducted into the lower mantle. The post-spinel type AB2O4 compounds are also interesting in materials science, because the pseudo-one-dimensional structure of double chains of octahedra containing magnetic cations may induce interesting magnetic and electrical properties and the post-spinel type compounds may have possibly high-ionic conductivity though the tunnel-like spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaogi M, Hamada Y, Suzuki T, Kobayashi M, Okada M (1999) High pressure transitions in the system MgAl2O4-CaAl2O4: a new hexagonal aluminous phase with implication for the lower mantle. Phys Earth Planet Inter 115:67–77

    Article  Google Scholar 

  • Akaogi M, Haraguchi M, Nakanishi K, Ajiro H, Kojitani H (2010) High-pressure phase relations in the system CaAl4Si2O11-NaAl3Si3O11 with implication for Na-rich CAS phase in shocked Martian meteorites. Earth Planet Sci Lett 289:503–508. https://doi.org/10.1016/j.epsl.2009.11.043

    Article  Google Scholar 

  • Akaogi M, Kamii N, Kishi A, Kojitani H (2004) Calorimetric study on high-pressure transitions in KAlSi3O8. Phys Chem Mineral 31:85–91. https://doi.org/10.1007/s00269-003-0372-9

    Article  Google Scholar 

  • Akaogi M, Tanaka A, Kobayashi M, Fukushima N, Suzuki T (2002) High-pressure transformations in NaAlSiO4 and thermodynamic properties of jadeite, nepheline, and calcium ferrite-type phase. Phys Earth Planet Inter 130:49–58. https://doi.org/10.1016/S0031-9201(01)00305-3

    Article  Google Scholar 

  • Andrault D, Bolfan-Casanova N (2001) High-pressure phase transformations in the MgFe2O4 and Fe2O3–MgSiO3 systems. Phys Chem Mineral 28:211–217

    Article  Google Scholar 

  • Arévalo-López AM, Dos santos-García AJ, Castillo-Martínez E, Durán A, Alario-Franco MA (2010) Spinel to CaFe2O4 transformation: mechanism and properties of β-CdCr2O4. Inorg Chem 49:2827–2833. https://doi.org/10.1021/ic902228h

  • Enomoto A, Kojitani H, Akaogi M, Miura H, Yusa H (2009) High-pressure transitions in MgAl2O4 and a new high-pressure phase of Mg2Al2O5. J Solid State Chem 182:389–395. https://doi.org/10.1016/j.jssc.2008.11.015

    Article  Google Scholar 

  • Foo ML, He T, Huang Q, Zandbergen HW, Siegrist T, Lawes G, Ramirez AP, Cava RJ (2006) Synthesis and characterization of the pseudo-hexagonal hollandites ALi2Ru6O12 (A = Na, K). J Solid State Chem 179:941–948

    Article  Google Scholar 

  • Funamori N, Jeanloz R, Nguyen JH, Kavner A, Caldwell WA (1998) High-pressure transformations in MgAl2O4. J Geophys Res 103:20813–20818

    Article  Google Scholar 

  • Gillet P, Chen M, Dubrovinsky L, El Goresy A (2000) Natural NaAlSi3O8-hollandite in the shocked Sixiangkou meteorite. Science 287:1633–1636

    Article  Google Scholar 

  • Hirao N, Ohtani E, Kondo T, Sakai T, Kikegawa T (2008) Hollandite II phase in KAlSi3O8 as a potential host mineral of potassium in the Earth’s lower mantle. Phys Earth Planet Inter 166:97–104. https://doi.org/10.1016/j.pepi.2007.11.002

    Article  Google Scholar 

  • Imada S, Hirose K, Ohishi Y (2011) Stabilities of NAL and Ca-ferrite-type phases on the join NaAlSiO4-MgAl2O4 at high pressure. Phys Chem Mineral 38:557–560. https://doi.org/10.1007/s00269-011-0427-2

    Article  Google Scholar 

  • Irifune T, Naka H, Sanehira T, Inoue T, Funakoshi K (2002) In situ X-ray observations of phase transitions in MgAl2O4 spinel to 40 GPa using multianvil apparatus with sintered diamond anvils. Phys Chem Mineral 29:645–654

    Article  Google Scholar 

  • Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368

    Article  Google Scholar 

  • Ishii T, Kojitani H, Akaogi M (2012) High-pressure phase transitions and subduction behavior of continental crust at pressure–temperature conditions up to the upper part of the lower mantle. Earth Planet Sci Lett 357:31–41. https://doi.org/10.1016/j.epsl.2012.09.019

    Article  Google Scholar 

  • Ishii T, Kojitani H, Akaogi M (2019) Phase relations of harzburgite and MORB up to the uppermost lower mantle conditions: Precise comparison with pyrolite by multisample cell high-pressure experiments with implication to dynamics of subducted slabs. J Geophys Res 124:3491–3507. https://doi.org/10.1029/2018JB016749

    Article  Google Scholar 

  • Ishii T, Kojitani H, Tsukamoto S, Fujino K, Mori D, Inaguma Y, Tsujino N, Yoshino T, Yamazaki D, Higo Y, Funakoshi K, Akaogi M (2014) High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications. Am Mineral 99:1788–1797. https://doi.org/10.2138/am.2014.4736

    Article  Google Scholar 

  • Ishii T, Kojitani H, Fujino K, Yusa H, Mori D, Inaguma Y, Matsushita Y, Yamaura K, Akaogi M (2015) High-pressure high-temperature transitions in MgCr2O4 and crystal structures of new Mg2Cr2O5 and post-spinel MgCr2O4 phases with implications for ultra-high pressure chromitites in ophiolites. Am Mineral 100:59–65. https://doi.org/10.2138/am-2015-4818

    Article  Google Scholar 

  • Ishii T, Tsujino N, Arii H, Fujino K, Miyajima N, Kojitani H, Kunimoto T, Akaogi M (2017) A shallow origin of so-called ultrahigh-pressure chromatites, based on single crystal X-ray structure analysis of the high-pressure Mg2Cr2O5 phase, with modified ludwigite-type structure. Am Mineral 102:2113–2118. https://doi.org/10.2138/am-2017-6050

    Article  Google Scholar 

  • Ishii T, Sakai T, Kojitani H, Mori D, Inaguma Y, Matsushita Y, Yamaura K, Akaogi M (2018) High-pressure phase relations and crystal structures of new post-spinel phases in MgV2O4, FeV2O4, and MnCr2O4: Crystal chemistry of AB2O4 post-spinel compounds. Inorg Chem 57:6648–6657. https://doi.org/10.1021/acs.inorgchem.8b00810

    Article  Google Scholar 

  • Ishii T, Miyajima N, Sinmyo R, Kojitani H, Mori D, Inaguma Y, Akaogi M (2020) Discovery of new-structured post-spinel MgFe2O4: Crystal structure and high-pressure phase relations. Geophys Res Lett 47:e2020GL087490. https://doi.org/10.1029/2020GL087490

  • Ishii T, Criniti G, Bykova E, Dubrovinsky L, Katsura T, Arii H, Kojitani H, Akaogi M (2021) High-pressure syntheses and crystal structure analyses of a new low-density CaFe2O4-related and CaTi2O4-type MgAl2O4. Am Mineral 106:1105–1112. https://doi.org/10.2138/am-2021-7619

    Article  Google Scholar 

  • Ito S, Suzuki K, Inagaki M, Naka S (1980) High-pressure modifications of CaAl2O4 and CaGa2O4. Mat Res Bull 15:925–932

    Article  Google Scholar 

  • Kato C, Hirose K, Komabayashi T, Ozawa H, Ohishi Y (2013) NAL phase in K-rich portions of the lower mantle. Geophys Res Lett 40:5085–5088. https://doi.org/10.1002/grl.50966

    Article  Google Scholar 

  • Kimura F, Kojitani H, Akaogi M (2021) High-pressure and high-temperature phase relations in the systems KAlSiO4-MgAl2O4 and CaAl2O4-MgAl2O4: stability fields of NAL phases. Phys Earth Planet Inter 310:106632. https://doi.org/10.1016/j.pepi.2020.106632

    Article  Google Scholar 

  • Kojitani H, Enomoto A, Tsukamoto S, Akaogi M, Miura H, Yusa H (2010) High pressure high temperature phase relations in MgAl2O4. J Phys: Conf Ser 215:012098. https://doi.org/10.1088/1742-6596/215/1/012098

    Article  Google Scholar 

  • Kojitani H, Hisatomi R, Akaogi M (2007) High-pressure phase relations and crystal chemistry of calcium ferrite-type solid solutions in the system MgAl2O4-Mg2SiO4. Am Mineral 92:1112–1118

    Article  Google Scholar 

  • Kojitani H, Ishii T, Akaogi M (2012) Thermodynamic investigation on phase equilibrium boundary between calcium ferrite-type MgAl2O4 and MgO + α-Al2O3. Phys Earth Planet Inter 212–213:100–105. https://doi.org/10.1016/j.pepi.2012.10.002

    Article  Google Scholar 

  • Kojitani H, Iwabuchi T, Kobayashi M, Miura H, Akaogi M (2011) Structure refinement of high-pressure hexagonal aluminous phases K1.00Mg2.00Al4.80Si1.15O12 and Na1.04Mg1.88Al4.64Si1.32O12. Am Mineral 96:1248–1253. https://doi.org/10.2138/am.2011.3638

    Article  Google Scholar 

  • Kojitani H, Többens DM, Akaogi M (2013) High-pressure Raman spectroscopy, vibrational mode calculation, and heat capacity calculation of calcium ferrite-type MgAl2O4 and CaAl2O4. Am Mineral 98:197–206. https://doi.org/10.2138/am.2013.4095

    Article  Google Scholar 

  • Lavina B, Dera P, Kim E, Meng Y, Downs RT, Weck PF, Sutton SR, Zhao Y (2011) Discovery of the recoverable high-pressure iron oxide Fe4O5. Proc Nat Acad Sci 108:17281–17285. https://doi.org/10.1073/pnas.1107573108

    Article  Google Scholar 

  • Levy D, Diella V, Dapiaggi M, Sani A, Gemmi M, Pavese A (2004) Equation of state, structural behavior and phase diagram of synthetic MgFe2O4, as a function of pressure and temperature. Phys Chem Mineral 31:122–129

    Article  Google Scholar 

  • Ling C, Mizuno F (2013) Phase stability of post-spinel compound AMn2O4 (A = Li, Na, or Mg) and its application as a rechargeable battery cathode. Chem Mater 25:3062–3071. https://doi.org/10.1021/cm401250c

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2005) Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Inter 150:239–263

    Article  Google Scholar 

  • Liu LG (1978) A new high-pressure phase of spinel. Earth Planet Sci Lett 41:398–404

    Article  Google Scholar 

  • Miura H, Hamada Y, Suzuki T, Akaogi M, Miyajima N, Fujino K (2000) Crystal structure of CaMg2Al6O12, a new Al-rich high pressure form. Am Mineral 85:1799–1803

    Article  Google Scholar 

  • Mizoguchi H, Zakharov LN, Marshall WJ, Sleight AW, Subramanian MA (2009) AA′2Rh6O12: A new family of rhodium oxides exhibiting high thermopower coupled with high electrical conductivity. Chem Mater 21:994–999

    Article  Google Scholar 

  • Mookaherjee M, Steinle-Neumann G (2009) Detecting deeply subducted crust from the elasticity of hollandite. Earth Planet Sci Lett 288:349–358. https://doi.org/10.1016/j.epsl.2009.09.037

    Article  Google Scholar 

  • Mukai K, Uyama T, Yamada I (2019) Structural and electrochemical analyses on the transformation of CaFe2O4-type LiMn2O4 from spinel-type LiMn2O4. ACS Omega 4:6459–6467. https://doi.org/10.1021/acsomega.9b00588

    Article  Google Scholar 

  • Nishiyama N, Rapp RP, Irifune T, Sanehira T, Yamazaki D, Funakoshi K (2005) Stability and P-V–T equation of state of KAlSi3O8-hollandite determined by in situ X-ray observations and implications for dynamics of subducted continental crust material. Phys Chem Mineral 32:627–637

    Article  Google Scholar 

  • Ono A, Akaogi M, Kojitani H, Yamashita K, Kobayashi M (2009) High-pressure phase relations and thermodynamic properties of hexagonal aluminous phase and calcium-ferrite phase in the systems NaAlSiO4-MgAl2O4 and CaAl2O4-MgAl2O4. Phys Earth Planet Inter 174:39–49. https://doi.org/10.1016/j.pepi.2008.07.028

    Article  Google Scholar 

  • Ono S, Kikegawa T, Ohishi Y (2006) The stability and compressibility of MgAl2O4 high-pressure polymorphs. Phys Chem Mineral 33:200–206

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures, U.S. Geol Surv Bull 2131, 461 pp

    Google Scholar 

  • Schollenbruch K, Woodland AB, Frost DJ (2010) The stability of hercynite at high pressures and temperatures. Phys Chem Mineral 37:137–143. https://doi.org/10.1007/s00269-009-0317-z

    Article  Google Scholar 

  • Sueda Y, Irifune T, Nishiyama N, Rapp RP, Ferroir T, Onozawa T, Yagi T, Merkel S, Miyajima N, Funakoshi K (2004) A new high-pressure form of KAlSi3O8 under lower mantle conditions. Geophys Res Lett 31:L23612. https://doi.org/10.1029/2004GL021156

    Article  Google Scholar 

  • Tomioka N, Mori H, Fujino K (2000) Shock-induced transition of NaAlSi3O8 feldspar into a hollandite structure in a L6 chondrite. Geophys Res Lett 27:3997–4000

    Article  Google Scholar 

  • Uenver-Thiele L, Woodland AB, Boffa Ballaran T, Miyajima N, Frost DJ (2017) Phase relations of MgFe2O4 at conditions of the deep upper mantle and transition zone. Am Mineral 102:632–642. https://doi.org/10.2138/am-2017-5871

    Article  Google Scholar 

  • Urakawa S, Kondo T, Igawa N, Shimomura O, Ohno H (1994) Synchrotron radiation study on the high-pressure and high-temperature phase relations of KAlSi3O8. Phys Chem Mineral 21:387–391

    Article  Google Scholar 

  • Wang X, Guo Y, Shi Y, Belik AA, Tsujimoto Y, Yi W, Sun Y, Shirako Y, Arai M, Akaogi M, Matsushita Y, Yamaura K (2012) High-pressure synthesis, crystal structure, and electromagnetic properties of CdRh2O4: an analogous oxide of the postspinel mineral MgAl2O4. Inorg Chem 51:6868–6875. https://doi.org/10.1021/ic300628m

    Article  Google Scholar 

  • Woodland AB, Frost DJ, Trots DM, Klimm K, Mezouar M (2012) In situ observation of the breakdown of magnetite (Fe3O4) to Fe4O5 and hematite at high pressures and temperatures. Am Mineral 97:1808–1811. https://doi.org/10.2138/am.2012.4270

    Article  Google Scholar 

  • Yagi A, Suzuki T, Akaogi M (1994) High pressure transitions in the system KAlSi3O8-NaAlSi3O8. Phys Chem Mineral 21:12–17

    Article  Google Scholar 

  • Yamada H, Matsui Y, Ito E (1984) Crystal-chemical characterization of KAlSi3O8 with the hollandite structure. Mineral J 12:29–34

    Article  Google Scholar 

  • Yamanaka T, Uchida A, Nakamoto Y (2008) Structural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa. Am Mineral 93:1874–1881. https://doi.org/10.2138/am.2008.2934

    Article  Google Scholar 

  • Yamaura K, Arai M, Sato A, Karki AB, Young DP, Movshovich R, Okamoto S, Mandrus D, Takayama-Muromachi E (2007) NaV2O4: a quasi-1D metallic antiferromagnet with half-metallic chains. Phys Rev Lett 99:196601. https://doi.org/10.1103/PhysRevLett.99.196601

    Article  Google Scholar 

  • Zhang J, Ko J, Hazen RM, Prewitt CT (1993) High-pressure crystal chemistry of KAlSi3O8 hollandite. Am Mineral 78:493–499

    Google Scholar 

  • Zhou Y, Irifune T, Ohfuji H, Shinmei T, Du W (2017) Stability region of K0.2Na0.8AlSi3O8 hollandite at 22 GPa and 2273 K. Phys Chem Mineral 44:33–42. https://doi.org/10.1007/s00269-016-0834-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Akaogi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akaogi, M. (2022). Post-spinel Transition in AB2O4. In: High-Pressure Silicates and Oxides. Advances in Geological Science. Springer, Singapore. https://doi.org/10.1007/978-981-19-6363-6_9

Download citation

Publish with us

Policies and ethics