Skip to main content

Crystal Chemistry, Phase Relations, and Energetics of High-Pressure ABO3 Perovskites

  • Chapter
  • First Online:
High-Pressure Silicates and Oxides

Part of the book series: Advances in Geological Science ((AGS))

  • 444 Accesses

Abstract

Because the perovskite structure consists of dense packing of ions, a less dense structured ABO3 compound with relatively large A and small B cations generally transforms to a perovskite-type phase at high pressure. In Earth science, it is established that MgSiO3-rich bridgmanite with an orthorhombic perovskite structure is the most abundant constituent mineral of the Earth’s lower mantle. In solid-state physics, materials science and engineering, various ABO3 oxides with perovskite-type and related structures have received much attention owing to their interesting dielectric, optical and other physical properties, and they are used as functional materials in industry. In this chapter, we discuss crystal chemistry of ABO3 perovskites stable at atmospheric pressure and at high pressures and show the high-pressure and high-temperature phase relations. Thermodynamic stability of ABO3 perovskites is discussed on the basis of enthalpy of formation in terms of ionic radii of A and B cations. We also discuss compounds with perovskite-related structures such as LiNbO3-type phases to which perovskites convert on release of pressure, as well as various types of hexagonal perovskites with layered structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aimi A, Katsumata T, Mori D, Fu D, Itoh M, Kyômen T, Hiraki H, Takahashi T, Inaguma Y (2011) High-pressure synthesis and correlation between structure, magnetic, and dielectric properties in LiNbO3-type MnMO3 (M = Ti, Sn). Inorg Chem 50(13):6392–6398. https://doi.org/10.1021/ic201006q

    Article  Google Scholar 

  • Akaogi M, Navrotsky A (1987) Calorimetric study of high-pressure phase transitions among the CdGeO3 polymorphs (pyroxenoid, garnet, ilmenite, and perovskite structures). Phys Chem Minerals 14:435–440

    Article  Google Scholar 

  • Akaogi M, Abe K, Yusa H, Kojitani H, Mori D, Inaguma Y (2015) High-pressure phase behaviors of ZnTiO3: ilmenite−perovskite transition, decomposition of perovskite into constituent oxides, and perovskite−lithium niobate transition. Phys Chem Minerals 42:421–429. https://doi.org/10.1007/s00269-015-0733-1

    Article  Google Scholar 

  • Akaogi M, Kojitani H, Yusa H, Yamamoto R, Kido M, Koyama K (2005) High-pressure transitions and thermochemistry of MGeO3 (M=Mg, Zn, and Sr) and Sr-silicates: Systematics in enthalpies of formation of A2+B4+O3 perovskites. Phys Chem Minerals 32:603–613

    Article  Google Scholar 

  • Akaogi M, Sone T, Konno G, Todoroki H, Kojitani H (2018) Abstracts 59th High-Pressure Conference of Japan

    Google Scholar 

  • Akaogi M, Tajima T, Okano M, Kojitani H (2019) High-pressure and high-temperature phase transitions in Fe2TiO4 and Mg2TiO4 with implications to titanomagnetite inclusions in superdeep diamonds. Minerals, Special Issue: Mineral Phys − In Memory of Orson Anderson, 9(10), 614. https://doi.org/10.3390/min9100614

  • Bensh W, Schmalle HW, Reller A (1990) Structure and thermochemical reactivity of CaRuO3 and SrRuO3. Solid State Ionics 43:171–177

    Article  Google Scholar 

  • Cheng J, Alonso JA, Suard E, Zhou J, Goodenough JB (2009) A new perovskite polytype in the high-pressure sequence of BaIrO3. J Am Chem Soc 131:7461–7469. https://doi.org/10.1021/ja901829e

    Article  Google Scholar 

  • Cheng J, Ishii T, Kojitani H, Matsubayashi K, Matsuo A, Li X, Shirako Y, Zhou J, Goodenough J, Jin CQ, Akaogi M, Uwatoko Y (2013) High-pressure synthesis of the BaIrO3 perovskite: a Pauli paramagnetic metal with a fermi liquid ground state. Phys Rev B 88:205114. https://doi.org/10.1103/PhysRevB.88.205114

    Article  Google Scholar 

  • Cussen EJ, Battle PD (2000) Crystal and magnetic structures of 2H BaMnO3. Chem Mater 12:831–838

    Article  Google Scholar 

  • Fujino K, Suzuki K, Hamane D, Seto Y, Nagai T, Sata N (2008) High-pressure phase relation of MnSiO3 up to 85 GPa: existence of MnSiO3 perovskite. Am Mineral 93:653–657. https://doi.org/10.2138/am.2008.2645

    Article  Google Scholar 

  • Fujino K, Nishio-Hamane D, Suzuki K, Izumi H, Seto Y, Nagai T (2009) Stability of the perovskite structure and possibility of the transition to the post-perovskite structure in CaSiO3, FeSiO3, MnSiO3 and CoSiO3. Phys Earth Planet Inter 177:147–151. https://doi.org/10.1016/j.pepi.2009.08.009

    Article  Google Scholar 

  • Glazer AM (1972) The classification of tilted octahedra on perovskites. Acta Cryst B 28, 3384–3392

    Google Scholar 

  • Gramsch SA, Morss LR (1995) Standard molar enthalpies of formation of PrO2 and SrPrO3: the unusual thermodynamic stability of APrO3(A = Sr, Ba). J Chem Thermodyn 27:551–560

    Article  Google Scholar 

  • Hiramatsu H, Yusa H, Igarashi R, Ohishi Y, Kamiya T, Hosono H (2017) An exceptionally narrow band-Gap (∼4 eV) silicate predicted in the cubic perovskite structure: BaSiO3. Inorg Chem 56:10535–10542. https://doi.org/10.1021/acs.inorgchem.7b01510

    Article  Google Scholar 

  • Hong ST, Sleight AW (1997) Crystal structure of 4H BaRuO3: high pressure phase prepared at ambient pressure. J Solid State Chem 128:251–255

    Article  Google Scholar 

  • Horiuchi H, Ito E, Weidner DJ (1987) Perovskite-type MgSiO3: single-crystal X-ray diffraction study. Am Mineral 72:357–360

    Google Scholar 

  • Inaguma Y (2017) High-pressure perovskites ln: synthesis, structure, and phase relation. In: Dronskowski R, Kikkawa S, Stein A (eds) Handbook of solid state chemistry, Wiley-VCH, pp 49–106

    Google Scholar 

  • Inaguma Y, Aimi A, Shirako Y, Sakurai D, Mori D, Kojitani H, Akaogi M, Nakayama M (2014) High-pressure synthesis, crystal structure, and phase stability relations of a LiNbO3-type polar titanate ZnTiO3 and its reinforced polarity by the second-order Jahn-Teller effect. J Am Chem Soc 136:2748–2756. https://doi.org/10.1021/ja408931v

    Article  Google Scholar 

  • Ishii T, Sinmyo R, Komabayashi T, Boffa Ballaran T, Kawazoe T, Miyajima N, Hirose K, Katsura T (2017) Synthesis and crystal structure of LiNbO3-type Mg3Al2Si3O12: a possible indicator of shock conditions of meteorites. Am Mineral 102:1947–1952. https://doi.org/10.2138/am-2017-6027

    Article  Google Scholar 

  • Ito E, Matsui Y (1978) Synthesis and crystal-chemical characterization of MgSiO3 perovskite. Earth Planet Sci Lett 38:443–450

    Article  Google Scholar 

  • Jin CQ, Zhou JS, Goodenough JB, Liu QQ, Zhao JG, Yang LX, Yu Y, Yu RC, Katsura T, Shatskiy A, Ito E (2008) High-pressure synthesis of the cubic perovskite BaRuO3 and evolution of ferromagnetism in ARuO3 (A = Ca, Sr, Ba) ruthenates. Proc Nat Acad Sci 105:7115–7119

    Article  Google Scholar 

  • Katz L, Ward R (1964) Structure relations in mixed metal oxides. Inorg Chem 3:205–211

    Article  Google Scholar 

  • Kennedy BJ, Howard CJ, Chakoumakos BC (1999) High-temperature phase transitions in SrZrO3. Phys Rev B 59:4023–4027

    Article  Google Scholar 

  • Kennedy BJ, Zhou Q, Avdeev M (2011) The ferroelectric phase of CdTiO3: a powder neutron diffraction study. J Solid State Chem 184:2987–2993. https://doi.org/10.1016/j.jssc.2011.08.028

    Article  Google Scholar 

  • Koito S, Akaogi M, Kubota O, Suzuki T (2000) Calorimetric measurements of perovskites in the system CaTiO3-CaSiO3 and experimental and calculated phase equilibria for high-pressure dissociation of diopside. Phys Earth Planet Inter 120:1–10

    Article  Google Scholar 

  • Kojitani H, Navrotsky A, Akaogi M (2001) Calorimetric study of perovskite solid solutions in the CaSiO3-CaGeO3 system. Phys Chem Minerals 28:413–420

    Article  Google Scholar 

  • Leinenweber K, Utsumi W, Tsuchida Y, Yagi T, Kurita K (1991) Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3. Phys Chem Minerals 18:244–250

    Article  Google Scholar 

  • Leinenweber K, Wang Y, Yagi T, Yusa H (1994) An unquenchable perovskite phase of MgGeO3 and comparison with MgSiO3 perovskite. Am Mineral 79:197–199

    Google Scholar 

  • Li Y, Cheng J, Alonso JA, Goodenough JB, Zhou J (2017) High-pressure synthesis, crystal structure, and magnetic and transport properties of a six-layered SrRhO3. Inorg Chem 56:8187–8194. https://doi.org/10.1021/acs.inorgchem.7b00864

    Article  Google Scholar 

  • Liebertz J, Rooymans CJM (1965) Die Ilmenit/Perowskit-Phasenumwandlung von CdTiO3 unter hohem Druck. Zeit Phys Chem 44:242–249

    Article  Google Scholar 

  • Linton JA, Fei Y, Navrotsky A (1999) The MgTiO3-FeTiO3 join at high pressure and temperature. Am Mineral 1595–1603

    Google Scholar 

  • Liu LG (1976) High-pressure phases of Co2SiO4, Ni2GeO4, Mn2GeO4 and MnGeO3; implications for the germanate-silicate modelling scheme and the earth’s mantle. Earth Planet Sci Lett 31:393–396

    Article  Google Scholar 

  • Liu LG, Ringwood AE (1975) Synthesis of a perovskite-type polymorph of CaSiO3. Earth Planet Sci Lett 28:209–211

    Article  Google Scholar 

  • Liu Z, Irifune T, Nishi M, Tange Y, Arimoto T, Shinmei T (2016) Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Phys Earth Planet Inter 257:18–27. https://doi.org/10.1016/j.pepi.2016.05.006

    Article  Google Scholar 

  • Longo JM, Kafalas JA (1968) Pressure-induced structural changes in the system Ba1-xSrxRuO3. Mater Res Bull 3:687–692

    Article  Google Scholar 

  • Longo JM, Kafalas JA, Arnott RJ (1971) Structure and properties of the high and low pressure forms of SrIrO3. J Solid State Chem 3:174–179

    Article  Google Scholar 

  • Megaw HD (1968) A note on the structure of lithium niobate, LiNbO3. Acta Cryst A24:583–588

    Article  Google Scholar 

  • Ming LC, Kim YH, Uchida T, Wang Y, Rivers M (2006) In situ X-ray diffraction study of phase transitions of FeTiO3 at high pressures and temperatures using a large-volume press and synchrotron radiation. Am Mineral 91:120–126

    Article  Google Scholar 

  • Mitchell RH (2002) Perovskites: modern and ancient, 318 pp, Almaz Press Inc.

    Google Scholar 

  • Nakatsuka A, Arima H, Ohtaka O, Fujiwara K, Yoshiasa A (2015) Crystal structure of SrGeO3 in the high-pressure perovskite-type phase. Acta Cryst E71:502–504. https://doi.org/10.1107/S2056989015007264

    Article  Google Scholar 

  • Navrotsky A (1980) Lower mantle phase transitions may generally have negative pressure-temperature slopes. Geophys Res Lett 7:709–711

    Article  Google Scholar 

  • Navrotsky A (1998) Energetics and crystal chemical systematics among ilmenite, lithium niobate, and perovskite structures. Chem Mater 10:2787–2793

    Article  Google Scholar 

  • Nguyen LT, Cava RJ (2021) Hexagonal perovskites as quantum materials. Chem Rev 121:2935–2965. https://doi.org/10.1021/acs.chemrev.0c00622

    Article  Google Scholar 

  • Ozima M, Susaki J, Akimoto S, Shimizu Y (1982) The system BaO-GeO2 at high pressures and temperatures, with special reference to high-pressure transformations in BaGeO3, BaGe2O5, and Ba2Ge5O12. J Solid State Chem 44:307–317

    Article  Google Scholar 

  • Puggioni D, Rondinelli JM (2016) Comment on “High-pressure synthesis of orthorhombic SrIrO3 perovskite and its positive magnetoresistance” J Appl Phys 103:103706 (2008). J Appl Phys, 119:086102. https://doi.org/10.1063/1.4942651

  • Qasim I, Kennedy BJ, Avdeev M (2013) Synthesis, structures and properties of transition metal doped SrIrO3. J Mate Chem A 1:3127–3132. https://hdl.handle.net/2123/24691

  • Rama Rao MV, Sathe VG, Sornadurai D, Panigrahi B, Shripathi T (2001) Electronic structure of ARuO3 (A=Ca, Sr and Ba) compounds. J Phys Chem Solids 62:797–806

    Article  Google Scholar 

  • Ross NL, Akaogi M, Navrotsky A, Susaki J, McMillan P (1985) Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet, and perovskite structures): Studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation. J Geophys Res 91:4685–4696

    Article  Google Scholar 

  • Ross NL, Ko J, Prewitt CT (1989) A new phase transition in MnTiO3: LiNbO3-perovskite structure. Phys Chem Minerals 16:621–629

    Article  Google Scholar 

  • Ross NL, Chaplin TD (2003) Compressibility of CaZrO3 perovskite: comparison with Ca-oxide perovskites. J Solid State Chem 172:123–126

    Article  Google Scholar 

  • Saines PJ, Kennedy BJ, Smith RI (2009) Structural phase transitions in BaPrO3. Mater Res Bull 44:874–879. https://doi.org/10.1016/j.materresbull.2008.09.013

    Article  Google Scholar 

  • Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal structure of CaGeO3 perovskite and the crystal chemistry of the GdFeO3-type perovskites. Am Mineral 68:1189–1198

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Cryst A32:751–767

    Article  Google Scholar 

  • Shannon RD, Gillson JL, Bouchard RJ (1977) Single crystal synthesis and electrical properties of CdSnO3, Cd2SnO4, In2TeO6 and Cdln2O4. J Phys Chem Solids 38:877–881

    Article  Google Scholar 

  • Smith AJ, Welch AJE (1960) Some mixed metal oxides of perovskite structure. Acta Cryst 13:653–656

    Article  Google Scholar 

  • Susaki J (1989) CdGeO3 - Phase transformations at high pressure and temperature and structural refinement of the perovskite polymorph. Phys Chem Minerals 16:634–641

    Article  Google Scholar 

  • Syono Y, Akimoto S, Ishikawa Y, Endoh Y (1969a) A new high pressure phase of MnTiO3 and its magnetic property. J Phys Chem Solids 30:1665–1672

    Article  Google Scholar 

  • Syono Y, Akimoto S, Kohn K (1969b) Structure relations of hexagonal perovskite-like compounds ABX3 at high pressure. J Phys Soc Jpn 26:993–999

    Article  Google Scholar 

  • Takayama-Muromachi E, Navrotsky A (1988) Energetics of compounds (A2+B4+O3) with the perovskite structure. J Solid State Chem 72:244–256

    Article  Google Scholar 

  • Thundathil MA, Jones CY, Snyder GJ, Haile SM (2005) Nonstoichiometry, structure, and electrical properties of “SrPrO3.” Chem Mater 17:5146–5154

    Article  Google Scholar 

  • Ushakov SV, Cheng J, Navrotsky A, Wu JR, Haile SM (2002) Formation enthalpies of tetravalent lanthanide perovskites by high temperature oxide melt solution calorimetry. Mat Res Soc Symp Proc 718:71–76

    Article  Google Scholar 

  • Varga T, Kumar A, Vlahos E, Denev S, Park M, Hong S, Sanehira T, Wang Y, Fennie CJ, Streiffer SK, Ke X, Schiffer P, Gopalan V, Mitchell JF (2009) Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3. Phys Rev Lett 103:047601. https://doi.org/10.1103/PhysRevLett.103.047601

    Article  Google Scholar 

  • Vegas A, Vallet-Regi M, Gonzalez-Calbet JM, Alario-Franco MA (1986) The ASnO3 (A = Ca, Sr) perovskites. Acta Cryst B42:167–172

    Article  Google Scholar 

  • Wäsche R, Denner W, Schulz H (1981) Influence of high hydrostatic pressure on the crystal structure of barium titanate (BaTiO3). Mater Res Bull 16:497–500

    Article  Google Scholar 

  • Wentzcovitch RM, Stixrude L, Karki BB, Kiefer B (2004) Akimotoite to perovskite phase transition in MgSiO3. Geophys Res Lett 31:L10611. https://doi.org/10.1029/2004GL019704

    Article  Google Scholar 

  • Xiao W, Tan D, Zhou W, Liu J, Xu J (2013) Cubic perovskite polymorph of strontium metasilicate at high pressures. Am Mineral 98:2096–2104. https://doi.org/10.2138/am.2013.4470

    Article  Google Scholar 

  • Yamanaka T, Hirai T, Komatsu Y (2002) Structure change of Ca1-xSrxTiO3 perovskite with composition and pressure. Am Mineral 87:1183–1189

    Article  Google Scholar 

  • Yang X, Li Q, Liu R, Liu B, Zhang H, Jiang S, Liu J, Zou B, Cui T, Liu B (2014) Structural phase transition of BaZrO3 under high pressure. J Appl Phys 115:124907. https://doi.org/10.1063/1.4868906

    Article  Google Scholar 

  • Yusa H (2018) Structural relaxation of oxide compounds from the high-pressure phase. In: Tanaka I (ed) Nanoinformatics. Springer, pp 259–277

    Chapter  Google Scholar 

  • Yusa H, Akaogi M, Sata N, Kojitani H, Kato Y, Ohishi Y (2005) Unquenchable hexagonal perovskite in high pressure polymorphs of strontium silicates. Am Mineral 90:1017–1020

    Article  Google Scholar 

  • Yusa H, Akaogi M, Sata N, Kojitani H, Yamamoto R, Ohishi Y (2006) High-pressure transformations of ilmenite to perovskite, and lithium niobate to perovskite in zinc germanate. Phys Chem Minerals 33:217–226

    Article  Google Scholar 

  • Yusa H, Sata N, Ohishi Y (2007) Rhombohedral (9R) and hexagonal (6H) perovskites in barium silicates under high pressure. Am Mineral 92:648–654. https://doi.org/10.2138/am.2007.2314

    Article  Google Scholar 

  • Yusa H, Miyakawa M (2021) US Patent App. 17/044, 838, 2021

    Google Scholar 

  • Zhao JG, Yang LX, Yu Y, Li FY, Yu RC, Fang Z, Chen LC, Jin CQ (2007) Structural and physical properties of the 6H BaRuO3 polymorph synthesized under high pressure. J Solid State Chem 180:2816–2823. https://doi.org/10.1016/j.jssc.2007.07.031

    Article  Google Scholar 

  • Zhernenkov M, Fabbris G, Chmaissem O, Mitchell JF, Zheng H, Haskel D (2013) Pressure-induced volume collapse and structural phase transitions in SrRuO3. J Solid State Chem 205:177–182. https://doi.org/10.1016/j.jssc.2013.07.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Akaogi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akaogi, M. (2022). Crystal Chemistry, Phase Relations, and Energetics of High-Pressure ABO3 Perovskites. In: High-Pressure Silicates and Oxides. Advances in Geological Science. Springer, Singapore. https://doi.org/10.1007/978-981-19-6363-6_7

Download citation

Publish with us

Policies and ethics