Skip to main content

Phase Transitions of Pyroxene and Garnet, and Post-spinel Transition Forming Perovskite

  • Chapter
  • First Online:
High-Pressure Silicates and Oxides

Part of the book series: Advances in Geological Science ((AGS))

  • 456 Accesses

Abstract

MgSiO3-rich orthopyroxene, CaMgSi2O6-rich clinopyroxene and Mg3Al2Si3O12-rich garnet consist of ~40 vol% of the Earth’s upper mantle. The two pyroxenes dissolve into garnet to form majorite garnet solid solution at a pressure range of ~8–16 GPa in the upper mantle and the transition zone. Perovskite-type CaSiO3 is exsolved from majorite at ~20 GPa. Majorite further transforms to perovskite-type MgSiO3-rich bridgmanite at the top part of the lower mantle. Spinel-type Mg2SiO4-rich (Mg,Fe)2SiO4 ringwoodite consisting of ~60 vol% of the lower part of the transition zone dissociates into (Mg,Fe)SiO3 bridgmanite and (Mg,Fe)O ferropericlase at ~23 GPa and ~1600 °C. This transition, called the post-spinel transition, is generally accepted to be responsible for the 660-km seismic discontinuity. This chapter is concerned with high-pressure experimental and thermodynamic studies on these phase transitions, which lead to the formation of perovskite-type silicate phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaogi M, Akimoto S (1977) Pyroxene-garnet solid solution equilibria in the systems Mg4Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 15:90–106

    Article  Google Scholar 

  • Akaogi M, Ito E (1993) Refinement of enthalpy measurement of MgSiO3 perovskite and negative pressure-temperature slopes for perovskite-forming reactions. Geophys Res Lett 20:1839–1842

    Article  Google Scholar 

  • Akaogi M, Navrotsky A, Yagi T, Akimoto S (1987) Pyroxene-garnet transformation: thermochemistry and elasticity of garnet solid solutions, and application to a pyrolite mantle. In: Manghnani MH, Syono Y (eds) High-pressure research in mineral physics. Geophysical monograph, vol 39. American Geophysical Union, pp 251–260

    Google Scholar 

  • Akaogi M, Kojitani H, Matsuzaka K, Suzuki T, Ito E (1998a) Postspinel transformations in the system Mg2SiO4-Fe2SiO4: element partitioning, calorimetry, and thermodynamic calculation. In Manghnani MH, Yagi T (eds) Properties of earth and planetary materials at high pressure and temperature. Geophysical monograph, vol 101. American Geophysical Union, pp 373–384

    Google Scholar 

  • Akaogi M, Ohmura N, Suzuki T (1998b) High pressure dissociation of Fe3Al2Si3O12 garnet: phase boundary determined by phase equilibrium experiments and calorimetry. Phys Earth Planet Inter 106:103–113

    Article  Google Scholar 

  • Akaogi M, Tanaka A, Ito E (2002) Garnet-ilmenite-perovskite transitions in the system Mg4Si4O12-Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria, calorimetry and implications for mantle structure. Phys Earth Planet Inter 132:303–324

    Article  Google Scholar 

  • Akaogi M, Yano M, Tejima Y, Iijima M, Kojitani H (2004) High-pressure transitions of diopside and wollastonite: phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5-CaTiSiO5 system. Phys Earth Planet Inter 143–144:145–156

    Article  Google Scholar 

  • Akaogi M, Takayama H, Kojitani H, Kawaji H, Atake T (2007) Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α-β-γ and postspinel phase relations at high pressure. Phys Chem Miner 34:169–183. https://doi.org/10.1007/s00269-006-0137-3

    Article  Google Scholar 

  • Akaogi M, Kojitani H, Morita T, Kawaji H, Atake T (2008) Low-temperature heat capacities, entropies and high-pressure phase relations of MgSiO3 ilmenite and perovskite. Phys Chem Miner 35:287–297. https://doi.org/10.1007/s00269-008-0222-x

    Article  Google Scholar 

  • Akaogi M, Haraguchi M, Yaguchi M, Kojitani H (2009) High-pressure phase relations and thermodynamic properties of CaAl4Si2O11 CAS phase. Phys Earth Planet Inter 173:1–6. https://doi.org/10.1016/j.pepi.2008.10.010

    Article  Google Scholar 

  • Akaogi M, Haraguchi M, Nakanishi K, Ajiro H, Kojitani H (2010) High-pressure phase relations in the system CaAl4Si2O11-NaAl3Si3O11 with implication for Na-rich CAS phase in shocked Martian meteorites. Earth Planet Sci Lett 289:503–508. https://doi.org/10.1016/j.epsl.2009.11.043

    Article  Google Scholar 

  • Akimoto S, Syono Y (1970) High-pressure decomposition of the system FeSiO3-MgSiO3. Phys Earth Planet Inter 3:186–188

    Article  Google Scholar 

  • Anderson OL, Isaak DG, Yamamoto S (1989) Anharmonicity and the equation of state for gold. J Appl Phys 65:1534–1543

    Article  Google Scholar 

  • Angel RJ (1997) Transformation of five-coordinated silicon to octahedral silicon in calcium silicate, CaSi2O5. Am Mineral 82:836–839

    Google Scholar 

  • Angel RJ, Finger LW, Hazen RM, Kanzaki M, Weidner DJ, Liebermann RC, Veblen DR (1989) Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1800 °C. Am Mineral 74:509–512

    Google Scholar 

  • Angel RJ, Chopelas A, Ross NL (1992) Stability of high-density clinoenstatite at upper-mantle pressures. Nature 358:322–324

    Article  Google Scholar 

  • Arimoto T, Irifune T, Nishi M, Tange T, Kunimoto T, Liu Z (2019) Phase relations of MgSiO3-FeSiO3 system up to 64 GPa and 2300 K using multianvil apparatus with sintered diamond anvils. Phys Earth Planet Inter 295:106297. https://doi.org/10.1016/j.pepi.2019.106297

    Article  Google Scholar 

  • Benz HM, Vidale JE (1993) Sharpness of upper-mantle discontinuities determined from high-frequency reflections. Nature 365:147–150

    Article  Google Scholar 

  • Bohlen SR, Essene EJ, Boettcher AL (1980) Reinvestigation and application of olivine-quartz-orthopyroxene barometry. Earth Planet Sci Lett 47:1–10

    Article  Google Scholar 

  • Brodholt JP (2000) Pressure-induced changes in the compression mechanism of aluminous perovskite in the Earth’s mantle. Nature 407:620–622

    Article  Google Scholar 

  • Christensen U (1995) Effects of phase transitions on mantle convection. Annu Rev Earth Planet Sci 23:65–87

    Article  Google Scholar 

  • Christensen U, Yuen DA (1985) Layered convection induced by phase transitions. J Geophys Res 90:10291–10300

    Article  Google Scholar 

  • Essene E (1974) High-pressure transformations in CaSiO3. Contrib Mineral Petrol 45:247–250

    Article  Google Scholar 

  • Fabrichnaya O, Saxena SK, Richet P, Westrum EF (2004) Thermodynamic data, models and phase diagrams in multicomponent oxide systems. Springer, Berlin, p 198

    Google Scholar 

  • Fei Y, Mao HK, Mysen BO (1991) Experimental determination of element partitioning and calculation of phase relations in the MgO-FeO-SiO2 system at high pressure and high temperature. J Geophys Res 96:2157–2169

    Article  Google Scholar 

  • Fei Y, Van Orman J, Li J, van Westrenen W, Sanloup C, Minarik W, Hirose K, Komabayashi T, Walter M, Funakoshi K (2004) Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res 109:B02305. https://doi.org/10.1029/2003JB002562

    Article  Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420. https://doi.org/10.1146/annurev.earth.36.031207.124322

    Article  Google Scholar 

  • Frost DJ, Langenhorst F, van Aken PA (2001) Fe-Mg partitioning between ringwoodite and magnesionwüstite and the effect of pressure, temperature and oxygen fugacity. Phys Chem Miner 28:455–470

    Article  Google Scholar 

  • Fu S, Yang J, Karato S, Vasiliev A, Presniakov MY, Gavriliuk AG, Ivanova AG, Hauri EH, Okuchi T, Purevjav N, Lin JF (2019) Water concentration in single-crystal (Al, Fe)-bearing bridgmanite grown from the hydrous melt: implications for dehydration melting at the topmost lower mantle. Geophys Res Lett 46:10346–10357. https://doi.org/10.1029/2019GL084630

    Article  Google Scholar 

  • Fukao Y, Obayashi M, Nakakuki T, Deep Slab Project Group (2009) Stagnant slab: a review. Annu Rev Earth Planet Sci 37:19–46. https://doi.org/10.1146/annurev.earth.36.031207.124224

  • Gasparik T, Wolf K, Smith CM (1994) Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. Am Mineral 79:1219–1222

    Google Scholar 

  • Ghosh S, Ohtani E, Litasov KD, Suzuki A, Dobson D, Funakoshi K (2013) Effect of water in depleted mantle on post-spinel transition and implication for 660 km seismic discontinuity. Earth Planet Sci Lett 371–372:103–111. https://doi.org/10.1016/j.epsl.2013.04.011

    Article  Google Scholar 

  • Heinemann S, Sharp TG, Seifert F, Rubie DC (1997) The cubic-tetragonal phase transition in the system majorite (Mg4Si4O12)–pyrope (Mg3Al2Si3O12), and garnet symmetry in the Earth’s transition zone. Phys Chem Miner 24:206–221

    Article  Google Scholar 

  • Helffrich GR, Wood BJ (2001) The Earth’s mantle. Nature 412:501–507

    Article  Google Scholar 

  • Higo Y, Inoue T, Irifune T, Yurimoto H (2001) Effect of water on the spinel-postspinel transformation in Mg2SiO4. Geophys Res Lett 28:3505–3508

    Article  Google Scholar 

  • Hirose K, Komabayashi T, Murakami M, Funakoshi K (2001) In situ measurements of the majorite-akimotoite-perovskite phase transition boundaries in MgSiO3. Geophys Res Lett 28:4351–4354

    Article  Google Scholar 

  • Holmes NC, Moriarty JA, Gathers GR, Nellis WJ (1989) The equation of state of platinum to 660 GPa (6.6 Mbar). J Appl Phys 66:2962–2967

    Article  Google Scholar 

  • Horiuchi H, Hirano M, Ito E, Matsui Y (1982) MgSiO3 (ilmenite-type): single crystal X-ray diffraction study. Am Mineral 67:788–793

    Google Scholar 

  • Horiuchi H, Ito E, Weidner DJ (1987) Perovskite-type MgSiO3: single-crystal X-ray diffraction study. Am Mineral 72:357–360

    Google Scholar 

  • Huang WL, Wyllie PJ (1975) Melting and subsolidus phase relationships for CaSiO3 to 35 kilobars pressure. Am Mineral 60:213–217

    Google Scholar 

  • Huang R, Boffa Ballaran T, McCammon CA, Miyajima N, Frost DJ (2021) The effect of Fe-Al substitution on the crystal structure of MgSiO3 bridgmanite. J Geophys Res 126:e2021JB021936. https://doi.org/10.1029/2021JB021936

  • Irifune T, Koizumi T, Ando J (1996) An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3O12. Phys Earth Planet Inter 96:147–157

    Article  Google Scholar 

  • Irifune T, Nishiyama N, Kuroda K, Inoue T, Isshiki M, Utsumi W, Funakoshi K, Urakawa S, Uchida T, Katsura T, Ohtaka O (1998) The post-spinel phase boundary in Mg2SiO4 determined by in-situ X-ray diffraction. Science 279:1698–1700

    Article  Google Scholar 

  • Ishii T, Kojitani H, Akaogi M (2011) Post-spinel transitions in pyrolite and Mg2SiO4 and akimotoite-perovskite transition in MgSiO3: precise comparison by high-pressure high-temperature experiments with multi-sample cell technique. Earth Planet Sci Lett 309:185–197. https://doi.org/10.1016/j.epsl.2011.06.023

    Article  Google Scholar 

  • Ishii T, Sinmyo R, Komabayashi T, Boffa Ballaran T, Kawazoe T, Miyajima N, Hirose K, Katsura T (2017) Synthesis and crystal structure of LiNbO3-type Mg3Al2Si3O12: a possible indicator of shock conditions of meteorites. Am Mineral 102:1947–1952. https://doi.org/10.2138/am-2017-6027

    Article  Google Scholar 

  • Ishii T, Huang R, Fei H, Koemets I, Liu Z, Maeda F, Yuan L, Wang L, Druzhbin D, Yamamoto T, Bhat S, Farla R, Kawazoe T, Tsujino N, Kulik E, Higo Y, Tange Y, Katsura T (2018) Complete agreement of the post-spinel transition with the 660-km seismic discontinuity. Sci Rep 8:6358. https://doi.org/10.1038/s41598-018-24832-y

  • Ishii T, Huang R, Myhill R, Fei H, Koemets I, Liu Z, Maeda F, Yuan L, Wang L, Druzhbin D, Yamamoto T, Bhat S, Farla R, Kawazoe T, Tsujino N, Kulik E, Higo Y, Tange Y, Katsura T (2019) Sharp 660-km discontinuity controlled by extremely narrow binary post-spinel transition. Nat Geosci 12:869–872. https://doi.org/10.1038/s41561-019-0452-1

  • Ito E, Yamada H (1982) Stability relations of silicate spinels, ilmenites and perovskites. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics. Center Academic Publications, Tokyo, Japan, pp 405–419

    Chapter  Google Scholar 

  • Ito E, Takahashi E (1989) Postspinel transformations in the system Mg2SiO4-Fe2SiO4 and some geophysical implications. J Geophys Res 94:10637–10646

    Article  Google Scholar 

  • Ito E, Akaogi M, Topor L, Navrotsky A (1990) Negative pressure-temperature slopes for reactions forming MgSiO3 perovskite from calorimetry. Science 249:1275–1278

    Article  Google Scholar 

  • Katsura T, Ueda A, Ito E, Morooka K (1998) Postspinel transition in Fe2SiO4. In: Manghnani MH, Yagi T (eds) High pressure-temperature research: properties of earth and planetary materials. American Geophysical Union, pp 435–440

    Google Scholar 

  • Katsura T, Yamada H, Shinmei T, Kubo A, Ono S, Kanzaki M, Yoneda A, Walter MJ, Ito E, Urakawa S, Funakoshi K, Utsumi W (2003) Post-spinel transition in Mg2SiO4 determined by high P-T in situ X-ray diffractometry. Phys Earth Planet Inter 136:11–24

    Article  Google Scholar 

  • Kojitani H, Navrotsky A, Akaogi M (2001) Calorimetric study of perovskite solid solutions in the CaSiO3-CaGeO3 system. Phys Chem Miner 28:413–420

    Article  Google Scholar 

  • Kojitani H, Katsura T, Akaogi M (2007) Aluminum substitution mechanisms in perovskite-type MgSiO3: an investigation by Rietveld analysis. Phys Chem Miner 34:257–267

    Article  Google Scholar 

  • Kojitani H, Inoue T, Akaogi M (2016) Precise measurements of enthalpy of post-spinel transition in Mg2SiO4 and application to the phase boundary calculation. J Geophys Res 121:729–742. https://doi.org/10.1002/2015JB012211

    Article  Google Scholar 

  • Kojitani H, Terata S, Ohsawa M, Mori D, Inaguma Y, Akaogi M (2017) Experimental and thermodynamic investigations on stability of Mg14Si5O24 anhydrous phase B with relevance to Mg2SiO4 forsterite, wadsleyite and ringwoodite. Am Mineral 102:2032–2044. https://doi.org/10.2138/am-2017-6115

    Article  Google Scholar 

  • Kojitani H, Yamazaki M, Tsunekawa Y, Katsuragi S, Noda M, Inoue T, Inaguma Y, Akaogi M (2022) Enthalpy, heat capacity and thermal expansivity measurements of MgSiO3 akimotoite: reassessment of its self-conisistent thermodynamic data set. Phys Earth Planet Inter, in press. https://doi.org/10.1016/j.pepi.2022.106937

  • Kubo A, Akaogi M (2000) Post-garnet transitions in the system Mg4Si4O12-Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite. Phys Earth Planet Inter 121:85–102

    Article  Google Scholar 

  • Kubo A, Suzuki T, Akaogi M (1997) High pressure phase equilibria in the system CaTiO3–CaSiO3: stability of perovskite solid solutions. Phys Chem Miner 24:488–494

    Article  Google Scholar 

  • Kulka BL, Dolinschi JD, Leinenweber KD, Prakapenka VB, Shim S-H (2020) The bridgmanite–akimotoite–majorite triple point determined in large volume press and laser-heated diamond anvil cell. Minerals 10:67. https://doi.org/10.3390/min10010067

    Article  Google Scholar 

  • Kurashina T, Hirose K, Ono S, Sata N, Ohishi Y (2004) Phase transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle. Phys Earth Planet Inter 145:67–74

    Article  Google Scholar 

  • Lees AC, Bukowinski MST, Jeanloz R (1983) Reflection properties of phase transition and compositional change models of the 670-km discontinuity. J Geophys Res 88:8145–8159

    Article  Google Scholar 

  • Litasov K, Ohtani E, Langenhorst F, Yurimoto H, Kubo T, Kondo T (2003) Water solubility in Mg-perovskites and water storage capacity in the lower mantle. Earth Planet Sci Lett 211:189–203

    Article  Google Scholar 

  • Litasov K, Ohtani E, Sano A, Suzuki A, Funakoshi K (2005a) In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: implication for the 660-km discontinuity. Earth Planet Sci Lett 238:311–328. https://doi.org/10.1016/j.epsl.2005.08.001

    Article  Google Scholar 

  • Litasov K, Ohtani E, Sano A, Suzuki A, Funakoshi K (2005b) Wet subduction versus cold subduction. Geophys Res Lett 32:L13312. https://doi.org/10.1029/2005GL022921

    Article  Google Scholar 

  • Liu LG (1974) Silicate perovskite from phase transformations of pyrope-garnet at high pressure and temperature. Geophys Res Lett 1:277–280

    Article  Google Scholar 

  • Liu LG, Ringwood AE (1975) Synthesis of a perovskite-type polymorph of CaSiO3. Earth Planet Sci Lett 28:209–211

    Article  Google Scholar 

  • Liu X, Ohfuji H, Nishiyama N, He Q, Sanehira T, Irifune T (2012) High-P behavior of anorthite composition and some phase relations of the CaO-Al2O3-SiO2 system to the lower mantle of the Earth, and their geophysical implications. J Geophys Res 117:B09205. https://doi.org/10.1029/2012JB009290

    Article  Google Scholar 

  • Liu Z, Irifune T, Nishi M, Tange Y, Arimoto T, Shinmei T (2016) Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Phys Earth Planet Inter 257:18–27. https://doi.org/10.1016/j.pepi.2016.05.006

    Article  Google Scholar 

  • Liu Z, Nishi M, Ishii T, Fei H, Miyajima N, Boffa Ballaran T, Ohfuji H, Sakai T, Wang L, Shcheka S, Arimoto T, Tange T, Higo Y, Irifune T, Katsura T (2017a) Phase relations in the system MgSiO3–Al2O3 up to 2300 K at lower mantle pressures. J Geophys Res 122:7775–7788. https://doi.org/10.1002/2017JB014579

    Article  Google Scholar 

  • Liu Z, Ishii T, Katsura T (2017b) Rapid decrease of MgAlO2.5 component in bridgmanite with pressure. Geochem Perspect Lett 5:12–18. https://doi.org/10.7185/geochemlet.1739

    Article  Google Scholar 

  • Liu Z, Akaogi M, Katsura T (2019) Increase of the oxygen vacancy component in bridgmanite with temperature. Earth Planet Sci Lett 505:141–151. https://doi.org/10.1016/j.epsl.2018.10.014

    Article  Google Scholar 

  • Liu Z, McCammon C, Wang B, Dubrovinsky L, Ishii T, Bondar D, Nakajima A, Tange Y, Higo Y, Cui T, Liu B, Katsura T (2020) Stability and solubility of the FeAlO3 component in bridgmanite at uppermost lower mantle conditions. J Geophys Res 125:e2019JB018447. https://doi.org/10.1029/2019JB018447

  • Mao HK, Shen G, Hemley RJ (1997) Multivariable dependence of Fe-Mg partitioning in the lower mantle. Science 278:2098–2100

    Article  Google Scholar 

  • Matsuzaka K, Akaogi M, Suzuki T, Suda T (2000) Mg-Fe partitioning between silicate spinel and magnesiowüstite at high pressure: experimental determination and calculation of phase relations in the system Mg2SiO4-Fe2SiO4. Phys Chem Miner 27:310–319

    Article  Google Scholar 

  • Navrotsky A, Schoenitz M, Kojitani H, Xu H, Zhang J, Weidner DJ, Jeanloz R (2003) Aluminum in magnesium silicate perovskite: formation, structure, and energetics of magnesium-rich defect solid solutions. J Geophys Res 108:2330. https://doi.org/10.1029/2002JB002055

    Article  Google Scholar 

  • Nishihara Y, Doi S, Kakizawa S, Higo Y, Tange Y (2019) Effect of pressure on temperature measurements using WRe thermocouple and its geophysical impact. Phys Earth Planet Inter 298:106348. https://doi.org/10.1016/j.pepi.2019.106348

    Article  Google Scholar 

  • Ohtani E (1979) Melting relation of Fe2SiO4 up to about 200 kbar. J Phys Earth 27:189–208

    Article  Google Scholar 

  • Ono S, Ohishi Y, Mibe K (2004) Phase transition of Ca-perovskite and stability of Al-bearing Mg-perovskite in the lower mantle. Am Mineral 89:1480–1485

    Article  Google Scholar 

  • Pacalo REG, Gasparik T (1990) Reversals of the orthoenstatite-clinoenstatite transition at high pressures and high temperatures. J Geophys Res 95:15853–15858

    Article  Google Scholar 

  • Ringwood AE (1967) The pyroxene-garnet transformation in the Earth’s mantle. Earth Planet Sci Lett 2:255–263

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin 2131, p 461

    Google Scholar 

  • Sasaki S, Takéuchi Y, Fujino K, Akimoto S (1982) Electron-density distributions of three orthopyroxenes, Mg2Si2O6, Co2Si2O6, and Fe2Si2O6. Z Krist 158:279–297

    Google Scholar 

  • Shcheka SS, Keppler H (2012) The origin of the terrestrial noble-gas signature. Nature 490:531–534. https://doi.org/10.1038/nature11506

    Article  Google Scholar 

  • Shim S, Duffy TS, Shen G (2000) The stability and P-V–T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. J Geophys Res 105:25955–25968

    Article  Google Scholar 

  • Shim S, Duffy TS, Shen G (2001) The post-spinel transformation in Mg2SiO4 and its relation to the 660-km seismic discontinuity. Nature 411:571–574

    Article  Google Scholar 

  • Shim SH, Grocholski B, Ye Y, Alp EE, Xu S, Morgan D, Meng Y, Prakapenka VB (2017) Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions. Proc Natl Acad Sci 114:6468–6473. https://doi.org/10.1073/pnas.1614036114

    Article  Google Scholar 

  • Speziale S, Zha C, Duffy TS, Hemley RJ, Mao HK (2001) Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure-volume-temperature equation of state. J Geophys Res 106:515–528

    Article  Google Scholar 

  • Stebbins JF, Kojitani H, Akaogi M, Navrotsky A (2003) Aluminum substitution in MgSiO3 perovskite: multiple mechanisms by 27Al NMR. Am Mineral 88:1161–1164

    Article  Google Scholar 

  • Stebbins JF, Du LS, Kelsey K, Kojitani H, Akaogi M, Ono S (2006) Aluminum substitution in stishovite and MgSiO3 perovskite: high-resolution 27Al NMR. Am Mineral 91:337–343. https://doi.org/10.2138/am.2006.1988

    Article  Google Scholar 

  • Sueda Y, Irifune T, Yamada A, Inoue T, Liu X, Funakoshi K (2006) The phase boundary between CaSiO3 perovskite and Ca2SiO4 + CaSi2O5 determined by in situ X-ray observations. Geophys Res Lett 33:L10307. https://doi.org/10.1029/2006GL025772

    Article  Google Scholar 

  • Tange Y, Takahashi E, Nishihara Y, Funakoshi K, Sata N (2009) Phase relations in the system MgO-FeO-SiO2 to 50 GPa and 2000 °C: an application of experimental techniques using multianvil apparatus with sintered diamond anvils. J Geophys Res 114:B02214. https://doi.org/10.1029/2008JB005891

    Article  Google Scholar 

  • Ulmer P, Stalder R (2001) The Mg(Fe)SiO3 orthoenstatite-clinoenstatite transitions at high pressures and temperatures determined by Raman-spectroscopy on quenched samples. Am Mineral 86:1267–1274

    Article  Google Scholar 

  • Wang Y, Weidner DJ (1994) Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle. Geophys Res Lett 21:895–898

    Article  Google Scholar 

  • Woodland AB, Angel RJ (1997) Reversal of the orthoferrosilite−high-P clinoferrosilite transition, a phase diagram for FeSiO3 and implications for the mineralogy of the Earth’s upper mantle. Eur J Mineral 9:245–254

    Article  Google Scholar 

  • Xu F, Vidale JE, Earle PS (2003) Survey of precursors to P’P’: fine structure of mantle discontinuities. J Geophys Res 108(B1):2024. https://doi.org/10.1029/2001JB000817

    Article  Google Scholar 

  • Yu YG, Wentzcovitch RM, Tsuchiya T, Umemoto K, Weidner DJ (2007) First principles investigation of the postspinel transition in Mg2SiO4. Geophys Res Lett 34:L10306. https://doi.org/10.1029/2007GL029462

    Article  Google Scholar 

  • Yu YG, Wentzcovitch RM, Vinograd VL, Angel RJ (2011) Thermodynamic properties of MgSiO3 majorite and phase transitions near 660 km depth in MgSiO3 and Mg2SiO4: a first principles study. J Geophys Res 116:B02208. https://doi.org/10.1029/2010JB007912

    Article  Google Scholar 

  • Yusa H, Akaogi M, Ito E (1993) Calorimetric study of MgSiO3 garnet and pyroxene: heat capacities, transition enthalpies, and equilibrium phase relations at high pressures and temperatures. J Geophys Res 98:6453–6460

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Akaogi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akaogi, M. (2022). Phase Transitions of Pyroxene and Garnet, and Post-spinel Transition Forming Perovskite. In: High-Pressure Silicates and Oxides. Advances in Geological Science. Springer, Singapore. https://doi.org/10.1007/978-981-19-6363-6_6

Download citation

Publish with us

Policies and ethics