Skip to main content

Olivine–Modified Spinel–Spinel Transitions

  • Chapter
  • First Online:
High-Pressure Silicates and Oxides

Part of the book series: Advances in Geological Science ((AGS))

Abstract

Olivine of Mg-rich (Mg,Fe)2SiO4 composition is accepted as the most abundant mineral in the Earth’s upper mantle. High-pressure phase transitions of (Mg,Fe)2SiO4 olivine have been investigated to clarify the constitution and dynamics of the Earth’s mantle. Mg-rich olivine transforms into the modified spinel-structured phase and next into the spinel-type phase as pressure increases. In this chapter, the high-pressure phase relations of olivine in the Mg2SiO4-Fe2SiO4 system are discussed; they were studied by means of high-pressure and high-temperature experiments and thermodynamic calculations based on calorimetric measurements. The historical aspects of these studies are also described. The modified spinel-type and spinel-type phases can incorporate water of up to about 3 wt% as OH in the structures. Therefore, the transition zone may be a major reservoir of water in the Earth’s interior. The effects of water on the phase relations in the Mg2SiO4-Fe2SiO4 system are discussed. Modified spinel-type phases belong to a group of spinelloid. The structures and phase relations of some representative spinelloid compounds are described in the final section of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaogi M, Akimoto S (1979) High-pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+-Fe2+ partitioning among constituent minerals. Phys Earth Planet Inter 19:31–51

    Article  Google Scholar 

  • Akaogi M, Navrotsky A (1984) Calorimetric study of the stability of spinelloids in the system NiAl2O4-Ni2SiO4. Phys Chem Miner 10:166–172

    Article  Google Scholar 

  • Akaogi M, Akimoto S, Horioka K, Takahashi K, Horiuchi H (1982) The system NiAl2O4-Ni2SiO4 at high pressures and temperatures: spinelloids with spinel-related structures. J Solid State Chem 44:257–267

    Article  Google Scholar 

  • Akaogi M, Ross NL, McMillan P, Navrotsky A (1984) The Mg2SiO4 polymorphs (olivine, modified spinel, and spinel)—thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations. Am Mineral 69:499–512

    Google Scholar 

  • Akaogi M, Ito E, Navrotsky A (1989) Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application. J Geophys Res 94:15671–15685

    Article  Google Scholar 

  • Akaogi M, Takayama H, Kojitani H, Kawaji H, Atake T (2007) Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α-β-γ and postspinel phase relations at high pressure. Phys Chem Miner 34:169–183. https://doi.org/10.1007/s00269-006-0137-3

    Article  Google Scholar 

  • Akimoto S (1972) The system MgO-FeO-SiO2 at high pressures and temperatures—phase equilibria and elastic properties. Tectonophys 13:161–187

    Article  Google Scholar 

  • Akimoto S (1987) High-pressure research in geophysics: past, present and future. In: Manghnani MH, Syono Y (eds) High-pressure research in mineral physics. Geophysical monograph, vol 39. American Geophysical Union, pp 1–13

    Google Scholar 

  • Akimoto S, Fujisawa H (1968) Olivine-spinel solid solution equilibria in the system Mg2SiO4-Fe2SiO4. J Geophys Res 73:1467–1479

    Article  Google Scholar 

  • Akimoto S, Komada E, Kushiro I (1967) Effect of pressure on the melting of olivine and spinel polymorph of Fe2SiO4. J Geophys Res 72:679–686

    Article  Google Scholar 

  • Anderson DL, Bass JD (1986) Transition region of the Earth’s upper mantle. Nature 320:321–328

    Article  Google Scholar 

  • Bell DR, Rossman GR (1992) Water in the Earth’s mantle: the role of nominally anhydrous minerals. Science 255:1391–1397

    Article  Google Scholar 

  • Benz HM, Vidale JE (1993) Sharpness of upper-mantle discontinuities determined from high-frequency reflections. Nature 365:147–150

    Article  Google Scholar 

  • Bina CR, Wood BJ (1987) Olivine-spinel transitions: experimental and thermodynamic constraints and implications for the nature of the 400 km seismic discontinuity. J Geophys Res 92:4853–4866

    Article  Google Scholar 

  • Buchen J, Marquardt H, Boffa Ballaran T, Kawazoe T, McCammon CA (2017) The equation of state of wadsleyite solid solutions: constraining the effects of anisotropy and crystal chemistry. Am Mineral 102:2494–2504. https://doi.org/10.2138/am-2017-6162

    Article  Google Scholar 

  • Chen J, Inoue T, Yurimoto H, Weidner DJ (2002) Effect of water on olivine-wadsleyite phase boundary in the (Mg, Fe)2SiO4 system. Geophys Res Lett 29:1875. https://doi.org/10.1029/2001GL014429

    Article  Google Scholar 

  • Dachs E, Geiger CA (2007) Entropies of mixing and subsolidus phase relations of forsterite-fayalite (Mg2SiO4-Fe2SiO4) solid solution. Am Mineral 92:699–702

    Article  Google Scholar 

  • Deuss A, Woodhouse J (2001) Seismic observations of splitting of the mid-transition zone discontinuity in Earth’s mantle. Science 294:354–357

    Article  Google Scholar 

  • Fabrichnaya O, Saxena SK, Richet P, Westrum EF (2004) Thermodynamic data, models and phase diagrams in multicomponent oxide systems. Springer, Berlin, p 198

    Google Scholar 

  • Fei Y, Saxena SK (1986) A thermochemical data base for phase equilibria in the system Fe-Mg-Si-O at high pressure and temperature. Phys Chem Miner 13:311–324

    Article  Google Scholar 

  • Fei Y, Bertka CM (1999) Phase transitions in the Earth’s mantle and mantle mineralogy. In: Fei Y, Bertka CM, Mysen B (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R. (Joe) Boyd. Geochemical Society, pp 189–207

    Google Scholar 

  • Frost DJ (2003a) Fe2+-Mg partitioning between garnet, magnesiowüstite, and (Mg, Fe)2SiO4 phases of the transition zone. Am Mineral 88:387–397

    Article  Google Scholar 

  • Frost DJ (2003b) The structure and sharpness of the (Mg, Fe)2SiO4 phase transformations in the transition zone. Earth Planet Sci Lett 216:313–328

    Article  Google Scholar 

  • Frost DJ, Dolejš D (2007) Experimental determination of the effect of H2O on the 410-km seismic discontinuity. Earth Planet Sci Lett 256:182–195

    Article  Google Scholar 

  • Frost DJ, McCammon CA (2009) The effect of oxygen fugacity on the olivine to wadsleyite transformation: implications for remote sensing of mantle redox state at the 410 km seismic discontinuity. Am Mineral 94:872–882. https://doi.org/10.2138/am.2009.3094

    Article  Google Scholar 

  • Fujino K, Sasaki S, Takeuchi Y, Sadanaga R (1981) X-ray determination of electron density distributions in forstrite, fayalite and tephroite. Acta Cryst B37:513–518

    Article  Google Scholar 

  • Hazen RM, Downs RT, Finger LW, Ko J (1993) Crystal chemistry of ferromagnesian silicate spinels: evidence for Mg-Si disorder. Am Mineral 78:1320–1323

    Google Scholar 

  • Hernández ER, Brodholt J, Alfè D (2015) Structural, vibrational and thermodynamic properties of Mg2SiO4 and MgSiO3 minerals from first-principles simulations. Phys Earth Planet Inter 240:1–24. https://doi.org/10.1016/j.pepi.2014.10.007

    Article  Google Scholar 

  • Higo Y, Inoue T, Irifune T, Yurimoto H (2001) Effect of water on the spinel-postspinel transformation in Mg2SiO4. Geophys Res Lett 28:3505–3508

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Horioka K, Takahashi K, Morimoto N, Horiuchi H, Akaogi M, Akimoto S (1981a) Structure of nickel aluminosilicate (phase IV): a high-pressure phase related to spinel. Acta Cryst B37:635–638

    Article  Google Scholar 

  • Horioka K, Nishiguchi M, Morimoto N, Horiuchi H, Akaogi M, Akimoto S (1981b) Structure of nickel aluminosilicate (phase V): a high-pressure phase related to spinel. Acta Cryst B37:638–640

    Article  Google Scholar 

  • Horiuchi H, Sawamoto H (1981) β-Mg2SiO4: single-crystal X-ray diffraction study. Am Mineral 66:568–575

    Google Scholar 

  • Horiuchi H, Akaogi M, Sawamoto H (1982) Crystal structure studies on spinel-related phases, spinelloids: implications to olivine-spinel phase transformation and systematics. In: Akimoto S, Manghnani MH (eds) High-pressure research in geophysics. Center Academic Publications, Japan, pp 391–403

    Chapter  Google Scholar 

  • Inoue T, Yurimoto H, Kudoh Y (1995) Hydrous modified spinel, Mg1.75SiH0.5O4: a new water reservoir in the mantle transition zone. Geophys Res Lett 22:117–120

    Article  Google Scholar 

  • Inoue T, Weidner DJ, Northrup PA, Parise JB (1998) Elastic properties of hydrous ringwoodite (γ-phase) in Mg2SiO4. Earth Planet Sci Lett 160:107–113

    Article  Google Scholar 

  • Inoue T, Irifune T, Higo Y, Sanehira T, Sueda Y, Yamada A, Shinmei T, Yamazaki D, Ando J, Funakoshi K, Utsumi W (2006) The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 determined by in situ X-ray diffraction. Phys Chem Miner 33:106–114

    Article  Google Scholar 

  • Inoue T, Ueda T, Tanimoto Y, Yamada A, Irifune T (2010a) The effect of water on the high-pressure phase boundaries in the system Mg2SiO4-Fe2SiO4. J Phys Conf Ser 215:012101. https://iopscience.iop.org/article/10.1088/1742-6596/215/1/012101

  • Inoue T, Wada T, Sasaki R, Yurimoto H (2010b) Water partitioning in the Earth’s mantle. Phys Earth Planet Inter 183:245–251. https://doi.org/10.1016/j.pepi.2010.08.003

  • Irifune T, Nishiyama N, Kuroda K, Inoue T, Isshiki M, Utsumi W, Funakoshi K, Urakawa S, Uchida T, Katsura T, Ohtaka O (1998) The post-spinel phase boundary in Mg2SiO4 determined by in-situ X-ray diffraction. Science 279:1698–1700

    Article  Google Scholar 

  • Ito E, Matsui Y, Suito K, Kawai N (1974) Synthesis of γ-Mg2SiO4. Phys Earth Planet Inter 8:342–344

    Article  Google Scholar 

  • Jacobs MHG, Schmid-Fetzer R, van den Berg AP (2019) Thermodynamic properties and phase diagrams in the system MgO-FeO-SiO2 at upper mantle and transition zone conditions derived from a multiple-Einstein method. Phys Chem Miner 46:513–534. https://doi.org/10.1007/s00269-018-01020-y

    Article  Google Scholar 

  • Kamb B (1968) Structural basis of the olivine-spinel stability relation. Am Mineral 53:1439–1455

    Google Scholar 

  • Katsura T, Ito E (1989) The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel and spinel. J Geophys Res 94:15663–15670

    Article  Google Scholar 

  • Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Aizawa Y, Yoshino T, Walter MJ, Ito E (2004) Olivine-wadsleyite transition in the system Mg2SiO4-Fe2SiO4. J Geophys Res 109. https://doi.org/10.1029/2003JB002438

  • Kawada K (1977) The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures and the Earth’s interior. PhD thesis, University of Tokyo, Tokyo

    Google Scholar 

  • Koch M, Woodland AB, Angel RJ (2004) Stability of spinelloid phases in the system Mg2SiO4-Fe2SiO4-Fe3O4 at 1100 °C and up to 10.5 GPa. Phys Earth Planet Inter 143–144:171–183

    Article  Google Scholar 

  • Kojitani H, Akaogi M (1994) Calorimetric study of olivine solid solutions in the system Mg2SiO4-Fe2SiO4. Phys Chem Miner 20:536–540

    Article  Google Scholar 

  • Kojitani H, Terata S, Ohsawa M, Mori D, Inaguma Y, Akaogi M (2017) Experimental and thermodynamic investigations on stability of Mg14Si5O24 anhydrous phase B with relevance to Mg2SiO4 forsterite, wadsleyite and ringwoodite. Am Mineral 102:2032–2044. https://doi.org/10.2138/am-2017-6115

    Article  Google Scholar 

  • Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol 123:345–357

    Article  Google Scholar 

  • Kudoh Y, Inoue T, Arashi H (1996) Structure and crystal chemistry of hydrous wadsleyite, Mg1.75SiH0.5O4: possible hydrous magnesium silicate in the mantle transition zone. Phys Chem Miner 23:461–469

    Article  Google Scholar 

  • Litasov KD, Ohtani E (2007) Effect of water on the phase relations in Earth’s mantle and deep water cycle. In: Ohtani E (ed) Advances in high-pressure mineralogy, vol 421. Geological Society of America, pp 115–156

    Google Scholar 

  • Ma CB (1974) New orthorhombic phases on the join NiAl2O4 (spinel analog) − Ni2SiO4 (olivine analog): stability and implications to mantle mineralogy. Contrib Mineral Petrol 45:257–279

    Article  Google Scholar 

  • Ma CB, Sahl K (1975) Nickel aluminosilicate, phase III. Acta Cryst B31:2142–2143

    Article  Google Scholar 

  • Ma CB, Tillmanns E (1975) Nickel aluminosilicate, phase II. Acta Cryst B31:2139–2141

    Article  Google Scholar 

  • Ma CB, Sahl K, Tillmanns E (1975) Nickel aluminosilicate, phase I. Acta Cryst B31:2137–2139

    Article  Google Scholar 

  • Madon M, Poirier JP (1983) Transmission electron microscope observation of α, β and γ (Mg, Fe)2SiO4 in shocked meteorites: planar defects and polymorphic transitions. Phys Earth Planet Inter 33:31–41

    Article  Google Scholar 

  • McMillan PF, Akaogi M, Sato RK, Poe B, Foley J (1991) Hydroxyl groups in β-Mg2SiO4. Am Mineral 76:354–360

    Google Scholar 

  • Morishima H, Kato T, Suto M, Ohtani E, Urakawa S, Utsumi W, Shimomura O, Kikegawa T (1994) The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science 265:1202–1203

    Article  Google Scholar 

  • Mrosko M, Koch-Müller M, McCammon C, Rhede D, Smyth JR, Wirth R (2015) Water, iron, redox environment: effects on the wadsleyite–ringwoodite phase transition. Contrib Mineral Petrol 170:9. https://doi.org/10.1007/s00410-015-1163-2

    Article  Google Scholar 

  • Ohtani E (2021) Hydration and dehydration in Earth’s Interior. Annu Rev Earth Planet Sci 49:253–278. https://doi.org/10.1146/annurev-earth-080320-062509

    Article  Google Scholar 

  • Ottonello G, Civalleri B, Ganguly J, Vetuschi Zuccolini M, Noel Y (2009) Thermophysical properties of the α-β-γ polymorphs of Mg2SiO4: a computational study. Phys Chem Miner 36:87–106

    Article  Google Scholar 

  • Ono S, Kikegawa T, Higo Y (2013) In situ observation of a phase transition in Fe2SiO4 at high pressure and high temperature. Phys Chem Miner 40:811–816. https://doi.org/10.1007/s00269-013-0615-3

    Article  Google Scholar 

  • Price GD (1983) Polymorphism and the factors determining the stability of spinelloid structures. Phys Chem Miner 10:77–83

    Article  Google Scholar 

  • Ringwood AE (1958) Olivine-spinel transition in fayalite. Bull Geol Soc Am 69:129–130

    Article  Google Scholar 

  • Ringwood AE, Major A (1970) The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures. Phys Earth Planet Inter 3:89–108

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geological Survey Bulletin 2131, p 461

    Google Scholar 

  • Robie RA, Finch CB, Hemingway BS (1982a) Heat capacity and entropy of fayalite (Fe2SiO4) between 5.1 and 383 K: comparison of calorimetric and equilibrium values for the QFM buffer reaction. Am Mineral 67:463–469

    Google Scholar 

  • Robie RA, Hemingway BS, Takei H (1982b) Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Am Mineral 67:470–482

    Google Scholar 

  • Sasaki S, Prewitt CT, Sato Y, Ito E (1982) Single crystal X-ray diffraction study of γ-Mg2SiO4. J Geophys Res 87:7829–7832

    Article  Google Scholar 

  • Smyth JR (1987) β-Mg2SiO4: a potential host for water in the mantle? Am Mineral 72:1051–1055

    Google Scholar 

  • Smyth JR, Kawamoto T (1997) Wadsleyite II: a new high pressure hydrous phase in the peridotite-H2O system. Earth Planet Sci Lett 146:9–16

    Article  Google Scholar 

  • Smyth JR, Holl CM, Frost DJ, Jacobsen SD, Langenhorst F, McCammon CA (2003) Structural systematics of hydrous ringwoodite and water in Earth’s interior. Am Mineral 88:1402–1407

    Article  Google Scholar 

  • Smyth JR, Holl CM, Langenhorst F, Laustsen HMS, Rossman GR, Kleppe A, McCammon CA, Kawamoto T, van Aken PA (2005) Crystal chemistry of wadsleyite II and water in the Earth’s interior. Contrib Mineral Petrol 31:691–705

    Google Scholar 

  • Stebbins JF, Panero WR, Smyth JR, Frost DJ (2009) Forsterite, wadsleyite, and ringwoodite (Mg2SiO4): 29Si NMR constraints on structural disorder and effects of paramagnetic impurity ions. Am Mineral 94:626–629. https://doi.org/10.2138/am.2009.3140

    Article  Google Scholar 

  • Stixrude L (1997) Structure and sharpness of phase transitions and mantle discontinuities. J Geophys Res 102:14835–14852

    Article  Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2011) Thermodynamics of mantle minerals: II. Phase equilibria. Geophys J Int 184:1180–1213. https://doi.org/10.1111/j.1365-246X.2010.04890.x

    Article  Google Scholar 

  • Suzuki A, Ohtani E, Morishima H, Kubo T, Kanbe Y, Kondo T, Okada T, Terasaki H, Kato T, Kikegawa T (2000) In situ determination of the phase boundary between wadsleyite and ringwoodite in Mg2SiO4. Geophys Res Lett 27:803–806

    Article  Google Scholar 

  • Tomioka N, Okuchi T (2017) A new high-pressure form of Mg2SiO4 highlighting diffusionless phase transitions of olivine. Sci Rep 7:17351. https://doi.org/10.1038/s41598-017-17698-z

    Article  Google Scholar 

  • Tomioka N, Bindi L, Okuchi T, Miyahara M, Iitaka T, Li Z, Kawatsu T, Xie X, Purevjav N, Tani R, Kodama Y (2021) Poirierite, a dense metastable polymorph of magnesium iron silicate in shocked meteorites. Commun Earth Environ 2:16. https://doi.org/10.1038/s43247-020-00090-7

    Article  Google Scholar 

  • Tsujino N, Yoshino T, Yamazaki D, Sakurai M, Sun W, Xu F, Tange Y, Higo Y (2019) Phase transition of wadsleyite-ringwoodite in the Mg2SiO4-Fe2SiO4 system. Am Mineral 104:588–594. https://doi.org/10.2138/am-2019-6823

    Article  Google Scholar 

  • Van der Meijde M, Marone F, Giardini D, van der Lee S (2003) Seismic evidence for water deep in Earth’s upper mantle. Science 300:1556–1558

    Article  Google Scholar 

  • Vidale JE, Ding XY, Grand SP (1995) The 410-km-depth discontinuity: a sharpness estimate from near-critical reflections. Geophys Res Lett 22:2557–2560

    Article  Google Scholar 

  • Wood BJ, Frazer D (1977) Elementary thermodynamics for geologists. Oxford University Press, p 303

    Google Scholar 

  • Xu F, Vidale JE, Earle PS (2003) Survey of precursors to P’P’: fine structure of mantle discontinuities. J Geophys Res 108(B1):2024. https://doi.org/10.1029/2001JB000817

  • Yagi T, Akaogi M, Shimomura O, Suzuki T, Akimoto S (1987) In situ observation of the olivine-spinel phase transformation in Fe2SiO4 using synchrotron radiation. J Geophys Res 92:6207–6213

    Article  Google Scholar 

  • Yong W, Dachs E, Withers AC, Essene EJ (2007) Heat capacity of γ-Fe2SiO4 between 5 and 303 K and derived thermodynamic properties. Phys Chem Miner 34:121–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Akaogi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akaogi, M. (2022). Olivine–Modified Spinel–Spinel Transitions. In: High-Pressure Silicates and Oxides. Advances in Geological Science. Springer, Singapore. https://doi.org/10.1007/978-981-19-6363-6_5

Download citation

Publish with us

Policies and ethics