Skip to main content

Crystal Chemistry and Thermodynamics of High-Pressure Phase Transition

  • Chapter
  • First Online:
High-Pressure Silicates and Oxides

Part of the book series: Advances in Geological Science ((AGS))

  • 400 Accesses

Abstract

The crystal chemical features of high-pressure phase transitions of silicates and oxides are discussed in this chapter mostly from the viewpoint of the ionic crystal model. High-pressure phase transitions of rock salt-type mono-oxides to the CsCl- and NiAs-type phases are discussed as examples. The pressure-induced electronic transition from high-spin state to low-spin state of iron in oxides is also described. The stabilities of low- and high-pressure phases are expressed in terms of chemical thermodynamics. Calculation methods of phase equilibria in simple systems at high pressure and high temperature are shown in the thermodynamic framework for applications in mantle minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaogi M, Ito E, Navrotsky A (1989) Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application. J Geophys Res 94:15671–15685

    Article  Google Scholar 

  • Akaogi M, Kojitani H, Matsuzaka K, Suzuki T, Ito E (1998) Postspinel transformations in the system Mg2SiO4-Fe2SiO4: Element partitioning, calorimetry, and thermodynamic calculation. In: Manghnani MH, Yagi T (eds) Properties of Earth and planetary materials at high pressure and temperature. Am Geophys Union Geophys Monogr 101:373–384

    Google Scholar 

  • Akaogi M, Takayama H, Kojitani H, Kawaji H, Atake T (2007) Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α-β-γ and postspinel phase relations at high pressure. Phys Chem Minerals 34:169–183. https://doi.org/10.1007/s00269-006-0137-3

    Article  Google Scholar 

  • Badro J (2014) Spin transitions in mantle minerals. Ann Rev Earth Planet Sci 42:231–248. https://doi.org/10.1146/annurev-earth-042711-105304

    Article  Google Scholar 

  • Badro J, Fiquet G, Guyot F, Rueff J-P, Struzhkin VV, Vankó G, Monaco G (2003) Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300:789–791

    Article  Google Scholar 

  • Badro J, Rueff J-P, Vankó G, Monaco G, Fiquet G, Guyot F (2004) Electronic transitions in perovskite: possible nonconvecting layers in the lower mantle. Science 305:383–386

    Article  Google Scholar 

  • Bloss FD (1994) Crystallography and crystal chemistry. Mineral Soc Am 545pp. Washington DC

    Google Scholar 

  • Cotton FA, Wilkinson G (1987) Advanced inorganic chemistry, 4th edn. Wiley, New York

    Google Scholar 

  • Fei Y, Mao HK (1994) In situ determination of the NiAs phase of FeO at high pressure and temperature. Science 266:1678–1680

    Article  Google Scholar 

  • Fyfe WS (1960) The possibility of d-electron coupling in olivine at high pressures. Geochim Cosmochim Acta 19:141–143

    Article  Google Scholar 

  • Ganguly J (2020) Thermodynamics in Earth and planetary sciences, 2nd edn, 610pp. Springer, Switzerland AG

    Google Scholar 

  • Hazen RM, Finger LW (1979) Bulk modulus-volume relationship for cation-anion polyhedra. J Geophys Res 84:6723–6728

    Article  Google Scholar 

  • Ida Y (1976) Ionic repulsive force and compressibility of ions. Phys Earth Planet Inter 13:97–104

    Article  Google Scholar 

  • Ito E, Yamazaki D, Yoshino T, Shan S, Guo X, Tsujimo N, Kunimoto T, Higo Y, Funakoshi K (2014) High pressure study of transition metal monoxides MnO and CoO: Structure and electrical resistance. Phys Earth Planet Inter 228:170–175. https://doi.org/10.1016/j.pepi.2013.12.009

    Article  Google Scholar 

  • Jeanloz R, Ahrens TJ, Mao HK, Bell PM (1979) B1–B2 transition in calcium oxide from shock-wave and diamond-cell experiments. Science 206:829–830

    Article  Google Scholar 

  • Kojitani H, Akaogi M (1994) Calorimetric study of olivine solid solutions in the system Mg2SiO4-Fe2SiO4. Phys Chem Minerals 20:536–540

    Article  Google Scholar 

  • Kojitani H, Inoue T, Akaogi M (2016) Precise measurements of enthalpy of post-spinel transition in Mg2SiO4 and application to the phase boundary calculation. J Geophys Res 121:729–742. https://doi.org/10.1002/2015JB012211

    Article  Google Scholar 

  • Kojitani H, Yamazaki M, Kojima M, Inaguma Y, Mori D, Akaogi M (2018) Thermodynamic investigation of the phase equilibrium boundary between TiO2 rutile and its α-PbO2-type high-pressure polymorph. Phys Chem Minerals 45:963–980. https://doi.org/10.1007/s00269-018-0977-7

    Article  Google Scholar 

  • Kondo T, Yagi T, Syono Y, Noguchi Y, Atou T, Kikegawa T, Shimomura O (2000) Phase transitions of MnO to 137 GPa. J Appl Phys 87:4153–4159

    Article  Google Scholar 

  • Kusaba K, Syono Y, Kikegawa T (1999) Phase transition of ZnO under high pressure and temperature. Proc Japan Acad 75:1–6

    Article  Google Scholar 

  • Lin JF, Struzhkin VV, Jacobsen SD, Hu MY, Chow P, Kung J, Liu H, Mao HK, Hemley RJ (2005) Spin transition of iron in magnesiowüstite in the Earth’s lower mantle. Nature 436:377–380

    Article  Google Scholar 

  • Lin JF, Speziale S, Mao Z, Marquardt H (2013) Effects of the electronic spin transition of iron in the lower mantle minerals: implications for deep mantle geophysics and geochemistry. Rev Geophys 51:244–275. https://doi.org/10.1002/rog.20010

    Article  Google Scholar 

  • Liu LG, Bassett WA (1972) Effect of pressure on the crystal structure and the lattice parameters of BaO. J Geophys Res 77:4934–4937

    Article  Google Scholar 

  • Matsuzaka K, Akaogi M, Suzuki T, Suda T (2000) Mg-Fe partitioning between silicate spinel and magnesiowüstite at high pressure: experimental determination and calculation of phase relations in the system Mg2SiO4-Fe2SiO4. Phys Chem Minerals 27:310–319

    Article  Google Scholar 

  • McWilliams RS, Spaulding DK, Eggert JH, Celliers PM, Hicks DG, Smith RF, Collins GW, Jeanloz R (2012) Phase transformations and metallization of magnesium oxide at high pressure and temperature. Science 338:1330–1333. https://doi.org/10.1126/science.1229450

    Article  Google Scholar 

  • Ozawa H, Takahashi F, Hirose K, Ohishi Y, Hirao N (2011) Phase transition of FeO and stratification in Earth’s outer core. Science 334:792–794. https://doi.org/10.1126/science.1208265

    Article  Google Scholar 

  • Prewitt CT, Downs RT (1998) High-pressure crystal chemistry. Rev Mineral 37:283–317

    Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the earth’s mantle. McGraw-Hill, New York, p 618

    Google Scholar 

  • Ringwood AE, Seabrook M (1963) High-pressure phase transformations in germanate pyroxenes and related compounds. J Geophys Res 68:4601–4609

    Article  Google Scholar 

  • Sato Y, Jeanloz R (1981) Phase transition in SrO. J Geophys Res 86:11773–11778

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst 32:751–767

    Article  Google Scholar 

  • Speziale S, Milner A, Lee VE, Clark SM, Pasternak MP, Jeanloz R (2005) Iron spin transition in Earth’s mantle. Proc Natl Acad Sci 102:17918–17922

    Article  Google Scholar 

  • Thompson JB (1967) Thermodynamic properties of simple solutions. In: Abelson PH (ed) Research in geochemistry. Wiley, pp 340–361

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Akaogi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akaogi, M. (2022). Crystal Chemistry and Thermodynamics of High-Pressure Phase Transition. In: High-Pressure Silicates and Oxides. Advances in Geological Science. Springer, Singapore. https://doi.org/10.1007/978-981-19-6363-6_2

Download citation

Publish with us

Policies and ethics