Skip to main content

Phase Transitions in Mantle Rocks

  • Chapter
  • First Online:
High-Pressure Silicates and Oxides

Part of the book series: Advances in Geological Science ((AGS))

  • 423 Accesses

Abstract

Phase transitions of silicates and oxides relevant to the Earth’s mantle have been discussed in previous chapters. In this chapter, we focus on phase transitions in mantle rocks and related materials. Pyrolite represents the average upper mantle composition. Oceanic lithospheres subducting into the deep mantle have a layered structure consisting of overlying basaltic crust, residual harzburgite, and depleted pyrolite from top to bottom. The phase transition behaviors of basalt, harzburgite and pyrolite are significantly different, which results in density differences among the rocks. The density differences lead to the subduction or stagnation of basaltic crust and harzburgite in the transition zone and the lower mantle. In addition, phase transitions in subducted continental crust materials are described. The post-perovskite transition in the lowermost mantle is discussed in the final section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaogi M, Akimoto S (1979) High-pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+-Fe2+ partitioning among constituent minerals. Phys Earth Planet Inter 19:31–51

    Article  Google Scholar 

  • Badro J (2014) Spin transitions in mantle minerals. Annu Rev Earth Planet Sci 42:231–248

    Google Scholar 

  • Badro J, Fiquet G, Guyot F, Rueff JP, Struzhkin VV, Vanko G, Monaco G (2003) Iron partitioning in the Earth's mantle: toward a deep lower mantle discontinuity. Science 300:789–791

    Google Scholar 

  • Badro J, Rueff JP, Vanko G, Monaco G, Fiquet G, Guyot F (2004) Electronic transitions in perovskite: possible nonconvecting layers in the lower mantle. Science 305:383–386

    Google Scholar 

  • Bass JD (2009) Theory and practice - Techniques for measuring high P/T elasticity. In: Price GD (ed) Mineral physics, treatise on geophysics, vol 2, Elsevier, pp 269–291

    Google Scholar 

  • Cammarano F, Deuss A, Goes S, Giardini D (2005) One-dimensional physical reference models for the upper mantle and transition zone: combining seismic and mineral physics constraints. J Geophys Res 110:B01306. https://doi.org/10.1029/2004JB003272

    Article  Google Scholar 

  • Chauvel C, Lewin E, Carpentier M, Arndt NT, Marini J-C (2008) Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array. Nat Geosci 1:64–67. https://doi.org/10.1038/ngeo.2007.51

    Article  Google Scholar 

  • Deuss A, Woodhouse J (2001) Seismic observations of splitting of the mid-transition zone discontinuity in Earth’s mantle. Science 294:354–357

    Article  Google Scholar 

  • Dobrzhinetskaya LF, Green HW (2007) Experimental studies of mineralogical assemblages of metasedimentary rocks at earth’s mantle transition zone conditions. J Metamorphic Geol 25:83–96

    Article  Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Frost DJ (2008) The upper mantle and transition zone. Elements 4:171–176

    Article  Google Scholar 

  • Frost DJ, Liebske C, Langenhorst F, McCammon CA, Trønnes RG, Rubie DC (2004) Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428:409–412

    Google Scholar 

  • Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420. https://doi.org/10.1146/annurev.earth.36.031207.124322

    Article  Google Scholar 

  • Fujino K, Nishio-Hamane D, Seto Y, Sata N, Nagai T, Shinmei T, Irifune T, Ishii H, Hiraoka N, Cai YQ, Tsuei KD (2012) Spin transition of ferric iron in Al-bearing Mg-perovskite up to 200 GPa and its implication for the lower mantle. Earth Planet Sci Lett 317:407–412. https://doi.org/10.1016/j.epsl.2011.12.006

    Article  Google Scholar 

  • Green DH, Hibberson WO, Jaques AL (1979) Petrogenesis of mid-ocean ridge basalts. In: McElhinney MW (ed) The Earth, its origin, structure and evolution. Academic Press, London, pp 265–299

    Google Scholar 

  • Hirose K (2002) Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J Geophys Res 107:2078. https://doi.org/10.1029/2001JB000597

    Article  Google Scholar 

  • Hirose K, Fei Y (2002) Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochim Cosmochim Acta 66:2099–2108

    Article  Google Scholar 

  • Hirose K, Fei Y, Ma Y, Mao HK (1999) The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397:53–56

    Article  Google Scholar 

  • Hirose K, Takafuji N, Sata N, Ohishi Y (2005) Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet Sci Lett 237:239–251. https://doi.org/10.1016/j.epsl.2005.06.035

    Article  Google Scholar 

  • Hirose K, Wentzcovitch R, Yuen DA, Lay T (2015) Mineralogy of the deep mantle—The post-perovskite phase and its geophysical significance. In: Price GD, Stixrude L (eds) Mineral physics, treatise on geophysics, vol 2, 2nd edn. Elsevier, pp 85–115

    Google Scholar 

  • Houser C, Williams Q (2010) Reconciling Pacific 410 and 660 km discontinuity topography, transition zone shear velocity patterns, and mantle phase transitions. Earth Planet Sci Lett 296:255–266. https://doi.org/10.1016/j.epsl.2010.05.006

    Article  Google Scholar 

  • Irifune T (1994) Absence of an aluminous phase in the upper part of the earth’s lower mantle. Nature 370:131–133

    Article  Google Scholar 

  • Irifune T, Ringwood AE (1987a) Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications. In: Manghnani MH, Syono Y (eds) High-pressure research in mineral physics, Geophys Monogr, Am Geophys Union, vol 39, pp 231–242

    Google Scholar 

  • Irifune T, Ringwood AE (1987b) Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behavior of the subducting slab. Earth Planet Sci Lett 86:365–376

    Article  Google Scholar 

  • Irifune T, Ringwood AE (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet Sci Lett 117:101–110

    Article  Google Scholar 

  • Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368

    Article  Google Scholar 

  • Irifune T, Shinmei T, McCammon CA, Miyajima N, Rubie DC, Frost DJ (2010) Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 327:193–195. https://doi.org/10.1126/science.1181443

    Article  Google Scholar 

  • Irifune T, Tsuchiya T (2015) Phase transitions and mineralogy of the lower mantle. In: Price GD, Stixrude L (eds) Mineral physics, treatise on geophysics, vol 2, 2nd edn. Elsevier, pp 33–60

    Chapter  Google Scholar 

  • Ishii T, Kojitani H, Akaogi M (2011) Post-spinel transitions in pyrolite and Mg2SiO4 and akimotoite-perovskite transition in MgSiO3: precise comparison by high-pressure high-temperature experiments with multi-sample cell technique. Earth Planet Sci Lett 309:185–197. https://doi.org/10.1016/j.epsl.2011.06.023

    Article  Google Scholar 

  • Ishii T, Kojitani H, Akaogi M (2012) High-pressure phase transitions and subduction behavior of continental crust at pressure-temperature conditions up to the upper part of the lower mantle. Earth Planet Sci Lett 357–358:31–41. https://doi.org/10.1016/j.epsl.2012.09.019

    Article  Google Scholar 

  • Ishii T, Kojitani H, Akaogi M (2018) Phase relations and mineral chemistry in pyrolitic mantle at 1600–2200°C under pressures up to the uppermost lower mantle: phase transitions around the 660-km discontinuity and dynamics of upwelling hot plumes. Phys Earth Planet Inter 274:127–137. https://doi.org/10.1016/j.pepi.2017.10.005

    Article  Google Scholar 

  • Ishii T, Kojitani H, Akaogi M (2019) Phase relations of harzburgite and MORB up to the uppermost lower mantle conditions: Precise comparison with pyrolite by multi-sample cell high-pressure experiments with implication to dynamics of subducted slabs. J Geophys Res 124:3491–3507. https://doi.org/10.1029/2018JB016749

    Article  Google Scholar 

  • Ishii T, Miyajima N, Criniti G, Hu Q, Glazyrin K, Katsura T (2022) High pressure-temperature phase relations of basaltic crust up to mid-mantle conditions. Earth Planet Sci Lett 584:117472. https://doi.org/10.1016/j.epsl.2022.117472

    Article  Google Scholar 

  • Jackson MG, Hart SR, Koppers AAP, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell JA (2007) The return of subducted continental crust in Samoan lavas. Nature 448:684–687

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the Earth from traveltimes. Geophys J Int 122:108–124

    Article  Google Scholar 

  • Lauterbach S, McCammon CA, Van Aken P, Langenhorst F, Seifert F (2000) Mössbauer and ELNES spectroscopy of (Mg, Fe)(Si, Al)O3 perovskite: a highly oxidized component of the lower mantle. Contrib Mineral Petrol 138:17–26

    Article  Google Scholar 

  • Lay T, Hernlund J, Buffett BA (2008) Core–mantle boundary heat flow. Nat Geosci 1:25–32. https://doi.org/10.1038/ngeo.2007.44

    Article  Google Scholar 

  • Lees AC, Bukowinski MST, Jeanloz R (1983) Reflection properties of phase transition and compositional change models of the 670-km discontinuity. J Geophys Res 88:8145–8159

    Article  Google Scholar 

  • Li B, Liebermann RC (2014) Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry. Phys Earth Planet Inter 233:135–153. https://doi.org/10.1016/j.pepi.2014.05.006

    Article  Google Scholar 

  • Litasov KD, Ohtani E, Sano A, Suzuki A, Funakoshi K (2005) In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: implication for the 660-km discontinuity. Earth Planet Sci Lett 238:311–328

    Article  Google Scholar 

  • McCammon C (1997) Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387:694–696

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Michael PJ, Bonatti E (1985) Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting. Earth Planet Sci Lett 73:91–104

    Article  Google Scholar 

  • Murakami M, Hirose K, Sata N, Ohishi Y (2005) Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys Res Lett 32:L03304. https://doi.org/10.1029/2004GL021956

    Article  Google Scholar 

  • Nishiyama N, Yagi T (2003) Phase relation and mineral chemistry in pyrolite to 2200 °C under the lower mantle pressures and implications for dynamics of mantle plumes. J Geophys Res 108:2255. https://doi.org/10.1029/2002JB002216

    Article  Google Scholar 

  • Nishiyama N, Irifune T, Inoue T, Ando J, Funakoshi K (2004) Precise determination of phase relations in pyrolite across the 660-km seismic discontinuity by in situ Xray diffraction and quench experiments. Phys Earth Planet Inter 143–144:185–199

    Article  Google Scholar 

  • Ohta K, Hirose K, Lay T, Sata N, Ohishi Y (2008) Phase transitions in pyrolite and MORB at lowermost mantle conditions: implications for a MORB-rich pile above the core–mantle boundary. Earth Planet Sci Lett 267:107–117

    Article  Google Scholar 

  • Ono S, Ito E, Katsura T (2001) Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet Sci Lett 190:57–63

    Article  Google Scholar 

  • Ono S, Ohishi Y, Isshiki M, Watanuki T (2005) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: implications for density of subducted oceanic plate. J Geophys Res 110:B02208. https://doi.org/10.1029/2004JB003196

    Article  Google Scholar 

  • Ricolleau A, Perrillat JP, Fiquet G, Daniel I, Matas J, Addad A, Menguy N, Cardon H, Mezouar M, Guignot N (2010) Phase relations and equation of state of a natural MORB: implications for the density profile of subducted oceanic crust in the earth’s lower mantle. J Geophys Res 115:B08202. https://doi.org/10.1029/2009JB006709

    Article  Google Scholar 

  • Ringwood AE (1982) Phase transformations and differentiation in subducted lithosphere: implications for mantle dynamics, basalt petrogenesis, and crustal evolution. J Geol 90:611–643

    Article  Google Scholar 

  • Shim SH, Grocholski B, Ye Y, Alp EE, Xu S, Morgan D, Meng Y, Prakapenka VB (2017) Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions. Proc Nat Acad Sci 114:6468–6473. https://doi.org/10.1073/pnas.1614036114

    Article  Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2005a) Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. J Geophys Res 110:B03204. https://doi.org/10.1029/2004JB002965

  • Stixrude L, Lithgow-Bertelloni C (2005b) Thermodynamics of mantle minerals: I. Physical properties. Geophys J Int 162:610–632. https://doi.org/10.1111/j.1365-246X.2005b.02642.x

  • Stixrude L, Lithgow-Bertelloni C (2012) Geophysics of chemical heterogeneity in the mantle. Annu Rev Earth Planet Sci 40:569–595. https://doi.org/10.1146/annurev.earth.36.031207.124244

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, Oxford, 312pp

    Google Scholar 

  • Wood BJ (2000) Phase transformations and partitioning relations in peridotite under lower mantle conditions. Earth Planet Sci Lett 174:341–354

    Article  Google Scholar 

  • Wu Y, Fei Y, Jin Z, Liu X (2009) The fate of subducted upper continental crust: an experimental study. Earth Planet Sci Lett 282:275–284. https://doi.org/10.1016/j.epsl.2009.03.028

    Article  Google Scholar 

  • Xu W, Lithgow-Bertelloni C, Stixrude L, Ritsema J (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth Planet Sci Lett 275:70–79. https://doi.org/10.1016/j.epsl.2008.08.012

    Article  Google Scholar 

  • Xu F, Vidale JE, Earle PS (2003) Survey of precursors to P’P’: fine structure of mantle discontinuities. J Geophys Res 108:2024. https://doi.org/10.1029/2001JB000817

    Article  Google Scholar 

  • Zhang Y, Wang Y, Wu Y, Bina CR, Jin Z, Dong S (2013) Phase transitions of harzburgite and buckled slab under eastern China. Geochem Geophys Geosyst 14:1182–1199. https://doi.org/10.1002/ggge.20069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Akaogi .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akaogi, M. (2022). Phase Transitions in Mantle Rocks. In: High-Pressure Silicates and Oxides. Advances in Geological Science. Springer, Singapore. https://doi.org/10.1007/978-981-19-6363-6_10

Download citation

Publish with us

Policies and ethics