Skip to main content

Structural Health Monitoring of Laminated Materials for Aerospace Application

  • Chapter
  • First Online:
Structural Integrity and Monitoring for Composite Materials

Part of the book series: Composites Science and Technology ((CST))

  • 312 Accesses

Abstract

Composite materials, thanks to their high-performance mechanical properties, have progressively replace metallic materials in various industrial sectors, in particular for aerospace. Composite structures may be prone to sequential or simultaneous damage modes occurring at different scales, such as matrix cracking, fiber failure or delamination and the earlier damage detection and identification constitute a significant challenge necessary to prevent the consequences of the damage modes on the overall structural health. Structural Health Monitoring (SHM) aims to improve the safety of structures and reduce the control downtime by integrating on-board inspection technologies adapted from Non-Destructive Evaluation (NDE), which the fully-grown techniques such as ultrasonics, X-rays or thermography inspections have definitively demonstrated their reliability in damage analysis for structural engineering applications. The SHM approaches are not restricted to in-service data acquisition mostly given by a distributed sensors network permanently attached on the surface or embedded within the monitored structure and required to diagnose its damage state using sophisticated algorithms and damage models. They also have to evaluate the remaining useful life of the structure. SHM process highly depends on the way to accurately detect damage at the incipient occurrence, thus it is necessary to know and understand the on-line monitoring tools allowing to investigate the damage state of the monitored structures. Thus, this chapter sets out to review the main SHM technologies restricted to laminated composites for aerospace applications, by presenting their respective advantages and drawbacks, in order to seize the potential of these techniques in accordance with the considered damage modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schubert E, Klassen M, Zerner I, Walz C, Sepold G (2001) Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry. J Mater Process Technol 115(1):2–8. https://doi.org/10.1016/S0924-0136(01)00756-7

    Article  Google Scholar 

  2. Williams JC, Starke EA (2003) Progress in structural materials for aerospace systems. Acta Mater 51(19):5775–5799. https://doi.org/10.1016/j.actamat.2003.08.023

    Article  CAS  Google Scholar 

  3. Twite RL, Bierwagen GP (1998) Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Prog Org Coat 33(2):91–100. https://doi.org/10.1016/S0300-9440(98)00015-0

    Article  CAS  Google Scholar 

  4. Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511806575

  5. Reid SR, Zhou G (2000) Impact behaviour of fibre-reinforced composite materials and structures, 1st edn. Woodhead Publishing

    Google Scholar 

  6. Harris B (2003) Fatigue in composites: science and technology of the fatigue response of fibre-reinforced plastics. Woodhead Publishing

    Book  Google Scholar 

  7. Soutis C (2005) Fibre reinforced composites in aircraft construction. Prog Aerosp Sci 41(2):143–151. https://doi.org/10.1016/j.paerosci.2005.02.004

    Article  Google Scholar 

  8. Yuqing F, Lihua Z (2009) New development of extra large composite aircraft components application technology. Advance of Aircraft Manufacture Technology. Acta Aeron Astron Sinica 3

    Google Scholar 

  9. Lu B, Wang N (2010) The Boeing 787: Dreamliner designing an aircraft for the future. J Young Investig. ISSN: 1539-4026

    Google Scholar 

  10. Shyha I, Soo SL, Aspinwall D, Bradley S (2010) Effect of laminate configuration and feed rate on cutting performance when drilling holes in carbon fibre reinforced plastic composites. J Mater Process Technol 210(8):1023–1034. https://doi.org/10.1016/j.jmatprotec.2010.02.011

    Article  CAS  Google Scholar 

  11. Kassapoglou C (2010) Design and analysis of composite structures: with application to aerospace structures, 1st edn. Wiley

    Google Scholar 

  12. Callister Jr, WD, Rethwisch DG (2018) Materials science and engineering: an introduction, 10th edn. Wiley

    Google Scholar 

  13. Singh AP, Sharma M, Singh I (2013) A review of modelling and control during drilling of fiber reinforced plastic composites. Compos B Eng 47:118–125. https://doi.org/10.1016/j.compositesb.2012.10.038

    Article  Google Scholar 

  14. Mouritz AP (2012) Introduction to aerospace materials. Woodhead Publishing

    Book  Google Scholar 

  15. Liu PF, Chu JK, Liu YL, Zheng JY (2012) A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission. Mater Des 37:228–235. https://doi.org/10.1016/j.matdes.2011.12.015

    Article  CAS  Google Scholar 

  16. van der Meer FP (2012) Mesolevel modeling of failure in composite laminates: constitutive, kinematic and algorithmic aspects. Arch Comput Methods Eng 19:381–425. https://doi.org/10.1007/s11831-012-9076-y

    Article  Google Scholar 

  17. Ramesh T, Chandra VS (2012) Damage and failure of composite materials. Cambridge University Press. https://doi.org/10.1017/cbo9781139016063

  18. Speckmann H (2007) IMRBPB meeting, EASA, Cologne, Germany, 22 April

    Google Scholar 

  19. Takaku A, Arridge RGC (1973) The effect of interfacial radial and shear stress on fibre pull-out in composite materials. J Phys D Appl Phys 6(17):2038. https://doi.org/10.1088/0022-3727/6/17/310

    Article  CAS  Google Scholar 

  20. Neto P, Alfaiate J, Vinagre J (2016) Assessment of the dependence of CFRP-concrete behaviour on the width of the bonded materials. Compos B Eng 91:448–457. https://doi.org/10.1016/j.compositesb.2016.01.054

    Article  CAS  Google Scholar 

  21. Gamstedt E (2000) Effects of debonding and fiber strength distribution on fatigue-damage propagation in carbon fiber-reinforced epoxy. J Appl Polym Sci 76(4):457–474. https://doi.org/10.1002/(SICI)1097-4628(20000425)76:4%3c457::aid-app%3ee3.0.co;2-l

    Article  CAS  Google Scholar 

  22. Güemes A, Fernandez-Lopez A, Pozo AR, Sierra-Pèrez J (2020) Structural health monitoring for advanced composite structures: a review. J Compos Sci 4(1):13. https://doi.org/10.3390/jcs4010013

  23. Smith RA (2009) Composite defects and their detection. Materials science and engineering, vol III. Encyclopedia of Life Support Systems

    Google Scholar 

  24. Ostré B, Bouvet C, Minot C, Aboissière J (2016) Experimental analysis of CFRP laminates subjected to compression after edge impact. Compos Struct 152:767–778. https://doi.org/10.1016/j.compstruct.2016.05.068

    Article  Google Scholar 

  25. Guidelines for implementation of structural health monitoring on fixed wing aircraft. SAE Standard ARP6461 (2013)

    Google Scholar 

  26. Rytter A (1993) Vibrational based inspection of civil engineering structures. Ph.D. Thesis, Aalborg University, Aalborg, Denmark

    Google Scholar 

  27. Masango TP, Philander O, Msomi V (2018) The continuous monitoring of the health of composite structure. J Eng 3. https://doi.org/10.1155/2018/8260298

  28. Papatheou E, Dervilis N, Maguire E, Worden K (2014) Wind turbine structural health monitoring: a short investigation based on SCADA data. In: 7th European workshop on structural health monitoring, Nantes, France, 8–11 July

    Google Scholar 

  29. Farrar CR, Worden K (2006) An introduction to structural health monitoring. Philos Trans R Soc A 365:303–315. https://doi.org/10.1098/rsta.2006.1928

    Article  Google Scholar 

  30. Stull CJ, Earls CJ, Koutsourelakis PS (2011) Model-based structural health monitoring of naval ship hulls. Comput Methods Appl Mech Eng 200(9–12):1137–1149. https://doi.org/10.1016/j.cma.2010.11.018

    Article  Google Scholar 

  31. Kralovec C, Schagerl M (2020) Review of structural health monitoring methods regarding a multi-sensor approach for damage assessment of metal and composite structures. Sensors 20(3):826. https://doi.org/10.3390/s20030826

    Article  Google Scholar 

  32. Sue Z, Ye L (2009) Identification of damage using Lamb wave. Lecture notes in applied and computational mechanics. Springer. https://doi.org/10.1007/978-1-84882-784-4

  33. Staab GH (1999) Mechanical test methods for lamina. In: Laminar composites. Butterworth-Heinemann, pp 102–141. https://doi.org/10.1016/B978-0-7506-7124-8.X5000-0

  34. Peters K (2009) Fiber-optic sensor principles. In: Encyclopedia of structural health monitoring. Wiley. https://doi.org/10.1002/9780470061626.shm024

  35. Measures R (2001) Structural monitoring with fiber optic technology, 1st edn. Academic

    Google Scholar 

  36. Okabe Y, Yashiro S, Kosaka T, Takeda N (2000) Detection of transverse cracks in CFRP composites using embedded Fiber Bragg Grating sensor. Smart Mater Struct 9(6):832. https://doi.org/10.1088/0964-1726/9/6/313

    Article  Google Scholar 

  37. Mizutani T, Okabe Y, Takeda N (2003) Quantitative evaluation of transverse cracks in carbon fiber reinforced plastic quasi-isotropic laminates with embedded small-diameter fiber Bragg grating sensors. Smart Mater Struct 12(6):898. https://doi.org/10.1088/0964-1726/12/6/006

    Article  CAS  Google Scholar 

  38. Tsuda H, Toyama N, Urabe K, Takatsubo J (2004) Impact damage detection in CFRP using fiber Bragg gratings. Smart Mater Struct 13(4):719. https://doi.org/10.1088/0964-1726/13/4/009

    Article  Google Scholar 

  39. Lin H-Y, Lau K-T, Cheng L (2005) Determination of dynamic strain profile and delamination detection of composite structures using embedded multiplexed fibre-optic sensors. Compos Struct 66(1–4):317–326. https://doi.org/10.1016/j.compstruct.2004.04.054

    Article  Google Scholar 

  40. Yashiro S, Okabe T, Toyama N, Takeda N (2007) Monitoring damage in holed CFRP laminates using embedded chirped FBG sensors. Int J Solids Struct 44(2):603–613. https://doi.org/10.1016/j.ijsolstr.2006.05.004

    Article  Google Scholar 

  41. Pearson JD, Zikry MA, Prabhugoud M, Peters K (2007) Global-local assessment of low-velocity impact damage in woven composites. J Compos Mater 41(23):2759–2783. https://doi.org/10.1177/0021998307078734

    Article  Google Scholar 

  42. McKenzie I, Jones R, Marshall IH, Galea S (2000) Optical fibre sensors for health monitoring of bonded repair systems. Compos Struct 50(4):405–416. https://doi.org/10.1016/S0263-8223(00)00107-0

    Article  Google Scholar 

  43. Sekine H, Fujimoto S-E, Okabe T, Takeda N, Yokobori T Jr (2006) structural health monitoring of cracked aircraft panels repaired with bonded patches using fiber Bragg grating sensors. Appl Compos Mater 13:87–98. https://doi.org/10.1007/s10443-006-9011-1

    Article  Google Scholar 

  44. Li HCH, Beck F, Dupouy O, Herszberg I, Stoddart PR, Davis CE, Mouritz AP (2006) Strain-based health assessment of bonded composite repairs. Compos Struct 76(3):234–242. https://doi.org/10.1016/j.compstruct.2006.06.032

    Article  Google Scholar 

  45. Kashyap R (2009) Fiber Bragg gratings, 2nd edn. Academic

    Google Scholar 

  46. Lin B, Giurgiutiu V (2006) Modeling and testing of PZT and PVDF piezoelectric wafer active sensors. Smart Mater Struct 15(4):1085–1093. https://doi.org/10.1088/0964-1726/15/4/022

    Article  CAS  Google Scholar 

  47. Giurgiutiu V (2014) Structural health monitoring with piezoelectric wafer active sensors, 2nd edn. Academic

    Google Scholar 

  48. Gardner JW, Varadan VK, Awadelkarim OO (2001) Microsensors, MEMS and smart devices. Wiley. https://doi.org/10.1002/9780470846087

  49. Franssila S (2004) Introduction to microfabrication. Wiley. https://doi.org/10.1002/9781119990413

    Article  Google Scholar 

  50. Varadan VK, Vinoy KJ, Gopalakrishnan S (2006) Smart material systems and MEMS: design and development methodologies. Wiley

    Google Scholar 

  51. Osiander R, Darrin MAG, Champion JL (2006) MEMS and microstructures in aerospace applications, 1st edn. CRC Press. https://doi.org/10.1201/9781420027747

  52. Staszewski WJ, Mahzan S, Traynor R (2009) Health monitoring of aerospace composite structures—active and passive approach. Compos Sci Technol 69(11):1678–1685. https://doi.org/10.1016/J.COMPSCITECH.2008.09.034

    Article  Google Scholar 

  53. Fritzen C, Kraemer P (2009) Self-diagnosis of smart structures based on dynamical properties. Mech Syst Signal Process 23:1830–1845. https://doi.org/10.1016/J.YMSSP.2009.01.006

    Article  Google Scholar 

  54. Lee S, Park T, Voyiadjis GZ (2003) Vibration analysis of multi delaminated beams. Compos B Eng 34(7):647–659. https://doi.org/10.1016/S1359-8368(03)00053-2

    Article  Google Scholar 

  55. Bois C, Herzog P, Hochard C (2007) Monitoring a delamination in a laminated composite beam using in-situ measurements and parametric identification. J Sound Vib 299(4–5):786–805. https://doi.org/10.1016/j.jsv.2006.07.026

    Article  Google Scholar 

  56. Farrar CR, Doebling SW, Nix DA (2001) Vibration–based structural damage identification. Philos Trans Roy Soc A 359:131–149. https://doi.org/10.1098/rsta.2000.0717

  57. Carden EP, Fanning P (2004) Vibration based condition monitoring: a review. Struct Health Monit 3:355–377. https://doi.org/10.1177/1475921704047500

    Article  Google Scholar 

  58. Fritzen CP (2005) Vibration-based structural health monitoring—concepts and applications. Key Eng Mater 293–294:20–23. https://doi.org/10.4028/www.scientific.net/FKEM.293-294.3

    Article  Google Scholar 

  59. Montalvão D, Maia NM, Ribeiro AM (2006) A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib Digest 38(4):295–324. https://doi.org/10.1177/0583102406065898

    Article  Google Scholar 

  60. Deraemaeker A, Worden K (2010) New trends in vibration based structural health monitoring. Springer. https://doi.org/10.1007/978-3-7091-0399-9

  61. Fan W, Qiao P (2011) Vibration-based damage identification methods: a review and comparative study. Struct Health Monit 10(1):83–111. https://doi.org/10.1177/1475921710365419

    Article  Google Scholar 

  62. Fassois SD, Sakaris CS, Sakellariou JS (2017) Vibration-based damage localization and estimation via the stochastic functional model based method (FMBM)—an overview. Struct Health Monit. https://doi.org/10.12783/shm2017/2f14100

  63. Kessler SS, Spearing SM, Soutis C (2002) Damage detection in composite materials using lamb wave methods. Smart Mater Struct 11(2):269–278. https://doi.org/10.1088/0964-1726/11/2/310

    Article  Google Scholar 

  64. Su Z, Ye L, Lu Y (2006) Guided Lamb waves for identification of damage in composite structures: a review. J Sound Vib 295(3–5):753–780. https://doi.org/10.1016/j.jsv.2006.01.020

    Article  Google Scholar 

  65. Raghavan A, Cesnik C (2007) Review of guided-wave structural health monitoring. Shock Vib Digest 39(2):91–114. https://doi.org/10.1177/0583102406075428

    Article  Google Scholar 

  66. Ng CT, Veidt M (2009) A Lamb-wave-based technique for damage detection in composite laminates. Smart Mater Struct 18(7):74006. https://doi.org/10.1088/0964-1726/18/7/074006

    Article  Google Scholar 

  67. Okabe Y, Fujibayashi K, Shimazaki M, Soejima H, Ogisu T (2010) Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves. Smart Mater Struct 19(11):115013. https://doi.org/10.1088/0964-1726/19/11/115013

    Article  Google Scholar 

  68. Gschossmann S, Humer C, Schagerl M (2016) Lamb wave excitation and detection with piezoelectric elements: essential aspects for a reliable numerical simulation. In: Proceedings of the 8th EWSHM, Bilbao, Spain, July 5–8

    Google Scholar 

  69. Humer C, Kralovec C, Schagerl M (2017) Scattering analysis of Lamb waves at subsurface cracks in isotropic plates. In: Proceedings of the 8th ECCOMAS thematic conference on smart structures and materials, Madrid, Spain, 5–8 June

    Google Scholar 

  70. Yeasin Bhuiyan M, Shen Y, Giurgiutiu V (2017) Interaction of Lamb waves with rivet hole cracks from multiple directions. Proc Inst Mech Eng Part C: J Mech Eng Sci 231(16):2974–2987. https://doi.org/10.1177/0954406216686996

  71. Lammering R, Gabbert U, Sinapius M, Schuster T, Wierach P (2018) Lamb-wave based structural health monitoring in polymer composites. Springer. https://doi.org/10.1007/978-3-319-49715-0

  72. Giurgiutiu V, Rogers CA (1998) Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE. In: Proceedings 3329, smart structures and materials, San Diego, USA, 27 July. https://doi.org/10.1117/12.316923

  73. Park G, Sohn H, Farrar CR, Inman D (2003) Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vib Digest 35:451–464

    Article  Google Scholar 

  74. Giurgiutiu V, Zagrai A (2005) Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method. Struct Health Monit 4(2):99–118. https://doi.org/10.1177/1475921705049752

    Article  Google Scholar 

  75. Malinowski P, Wandowski T, Ostachowicz W (2015) The use of electromechanical impedance conductance signatures for detection of weak adhesive bonds of carbon fibre–reinforced polymer. Struct Health Monit 14(4):332–344. https://doi.org/10.1177/1475921715586625

    Article  Google Scholar 

  76. Wilson CL, Lonkar K, Roy S, Kopsaftopoulos F, Chang F-K (2018) Structural health monitoring of composites. In: Zweben CH, Beaumont P (eds) Comprehensive composite materials II. Elsevier, pp 382–407

    Chapter  Google Scholar 

  77. Staszewski W, Boller C, Tomlinson G (2004) Health monitoring of aerospace structures: smart sensor technologies and signal processing. Wiley

    Google Scholar 

  78. Loutas TH, Sotiriades G, Kostopoulos V (2004) On the application of wavelet transform of AE signals from composite materials. In: European working group on acoustic emission conference, Berlin, Germany

    Google Scholar 

  79. Bourchak M, Farrow IR, Bond IP, Rowland CW, Menan F (2007) Acoustic emission energy as a fatigue damage parameter for CFRP composites. Int J Fatigue 29(3):457–470. https://doi.org/10.1016/j.ijfatigue.2006.05.009

    Article  CAS  Google Scholar 

  80. Gardiner DS, Pearson LH (2008) Acoustic emission monitoring of composite damage occurring under static and impact loading. Exp Tech 9(11):22–28. https://doi.org/10.1111/j.1747-1567.1985.tb02362.x

    Article  Google Scholar 

  81. Wevers M, Lambrighs K (2009) Applications of acoustic emission for SHM: a review. In: Encyclopedia of structural health monitoring. Wiley. https://doi.org/10.1002/9780470061626.shm011

  82. Scholey JJ, Wilcox PD, Wisnom MR, Friswell MI (2010) Quantitative experimental measurements of matrix cracking and delamination using acoustic emission. Compos A Appl Sci Manuf 41(5):612–623. https://doi.org/10.1016/j.compositesa.2010.01.008

    Article  CAS  Google Scholar 

  83. Yeasin Bhuiyan M, Giurgiutiu V (2017) Experimental and computational analysis of acoustic emission waveforms for SHM applications. In: Proceedings of IWSHM, Stanford University, CA, USA

    Google Scholar 

  84. Soman R, Malinowski P, Majewska K, Mieloszyk M, Ostachowicz W (2018) Kalman filter based neutral axis tracking in composites under varying temperature conditions. Mech Syst Signal Process 110:485–498. https://doi.org/10.1016/j.ymssp.2018.03.046

    Article  Google Scholar 

  85. Ono K (2018) Review on structural health evaluation with acoustic emission. Appl Sci 8(6):958. https://doi.org/10.3390/app8060958

    Article  CAS  Google Scholar 

  86. Güemes JA, Menéndez JM (2002) Response of Bragg grating fiber-optic sensors when embedded in composite laminates. Compos Sci Technol 62(7–8):959–966. https://doi.org/10.1016/S0266-3538(02)00010-6

    Article  Google Scholar 

  87. Majumder M, Gangopadhyay TK, Chakraborty AK, Dasgupta K, Bhattacharya DK (2008) Fibre Bragg gratings in structural health monitoring—present status and applications. Sens Actuators A 147(1):150–164. https://doi.org/10.1016/j.sna.2008.04.008

    Article  CAS  Google Scholar 

  88. Luyckx G, Voet E, Lammens N, Degrieck J (2011) Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research. Sensors 11(1):384–408. https://doi.org/10.3390/s110100384

    Article  Google Scholar 

  89. Di Sante R (2015) Fibre optic sensors for structural health monitoring of aircraft composite structures: recent advances and applications. Sensors 15(8):18666–18713. https://doi.org/10.3390/s150818666

    Article  Google Scholar 

  90. Kinet D, Mégret P, Goossen KW, Qiu L, Heider D, Caucheteur C (2014) Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions. Sensors 14(4):7394–7419. https://doi.org/10.3390/s140407394

    Article  Google Scholar 

  91. Güemes A, Fernández-López A, Díaz-Maroto PF, Lozano A, Sierra-Perez J (2018) Structural health monitoring in composite structures by fiber-optic sensors. Sensors 18(4):1094. https://doi.org/10.3390/s18041094

    Article  Google Scholar 

  92. Aliabadi MH, Sharif Khodeai Z (2018) Structural health monitoring for advanced composite structures. World Scientific Publishing Ltd.

    Google Scholar 

  93. Wishaw M, Barton DP (2001) Comparative vacuum monitoring: a new method of in-situ real-time crack detection and monitoring. In: Proceedings of 10th Asia-Pacific conference on nondestructive testing, Brisbane, Australia, 17–21 Sept

    Google Scholar 

  94. Stehmeier H, Speckmann H (2004) Comparative vacuum monitoring (CVM). In: Proceedings of the 2nd European workshop on structural health monitoring, Munich, Germany, 7–9 July

    Google Scholar 

  95. Roach D (2009) Real time crack detection using mountable comparative vacuum monitoring sensors. Smart Struct Syst 5(4):317–328. https://doi.org/10.12989/sss.2009.5.4.317

  96. Cawley P, Adams RD (1979) The localization of defects in structures from measurements of natural frequencies. J Strain Anal Eng Des 14(2):49–57. https://doi.org/10.1243/03093247V142049

  97. Messina A, Jones I, Williams E (1996) Damage detection and localization using natural frequency changes. In: Proceedings of the conference on identification in engineering systems, Cambridge, UK, 1 March

    Google Scholar 

  98. Messina A, Williams E, Contursi T (1998) Structural damage detection by a sensitivity and statistical-based method. J Sound Vib 216(5):791–808. https://doi.org/10.1006/jsvi.1998.1728

    Article  Google Scholar 

  99. Pastor M, Binda M, Harcarik T (2012) Modal assurance criterion. Procedia Eng 48:543–548. https://doi.org/10.1016/j.proeng.2012.09.551

    Article  Google Scholar 

  100. Clayton EH, Koh B-H, Xing G, Fok C-L, Dyke SJ, Lu C (2005) Damage detection and correlation-based localization using wireless mote sensors. In: Proceedings of the 2005 IEEE international symposium on mediterranean conference on control and automation intelligent control, pp 304–309. https://doi.org/10.1109/.2005.1467032

  101. Lieven NAJ, Ewins DJ (1988) Spatial correlation of modes: the coordinate modal assurance criterion (COMAC). In: Proceeding of the 6th international modal analysis conference, Hyatt Orlando Kissimmee, USA, 1–4 Feb

    Google Scholar 

  102. Pascual R, Golinval JC, Razeto M (1997) A frequency domain correlation technique for model correlation and updating. In: 15th International modal analysis conference (IMAC), Orlando, USA, 3–6 Feb

    Google Scholar 

  103. Zang C, Grafe H, Imregun M (2001) Frequency-domain criteria for correlating and updating dynamic finite element models. Mech Syst Signal Process 15(1):139–155. https://doi.org/10.1006/mssp.2000.1357

    Article  Google Scholar 

  104. Lamb H (1917) On waves in an elastic plate. Proc Roy Soc Lond A: Math Phys Eng Sci 93(648):114–128. https://doi.org/10.1098/rspa.1917.0008

    Article  Google Scholar 

  105. Larrosa C, Lonkar K, Shankar S, Chang FK (2011) Damage classification in composite laminates: matrix micro-cracking and delamination. In: Proceedings of the 8th international workshop on structural health monitoring, vol 2, pp 191–199

    Google Scholar 

  106. Larrosa C, Janapati V, Roy S, Chang FK (2011) In-situ damage assessment of composite laminates via active sensor networks. In: Proceedings 2011 aircraft airworthiness and sustainment conference, pp 1–10

    Google Scholar 

  107. Lemistre M, Balageas D (2001) Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Mater Struct 10(3):504–511. https://doi.org/10.1088/0964-1726/10/3/312

    Article  Google Scholar 

  108. Diaz Valdes SH, Soutis C (2001) A structural health monitoring system for laminated composites. In: Proceedings of the 3rd international workshop on structural health monitoring, Stanford, USA, 12–14 Sept

    Google Scholar 

  109. Diamanti K, Soutis C, Hodgkinson JM (2005) Lamb waves for the non-destructive inspection of monolithic and sandwich composite beams. Composites: Part A 36(2):189–195. https://doi.org/10.1016/j.compositesa.2004.06.013

  110. Harri K, Guillaume P, Vanlanduit S (2008) On-line damage detection on a wing panel using transmission of multisine ultrasonic waves. NDT&E Int 41(4):312–317. https://doi.org/10.1016/j.ndteint.2007.10.012

    Article  Google Scholar 

  111. Liang C, Sun FP, Rogers CA (1994) Coupled electro-mechanical analysis of adaptive material systems—determination of the actuator power consumption and system energy transfer. J Intell Mater Syst Struct 5(1):12–20. https://doi.org/10.1177/1045389X9400500102

    Article  Google Scholar 

  112. Tseng KK, Naidu ASK (2002) Non-parametric damage detection and characterization using smart piezoceramic material. Smart Mater Struct 11(3):317–329. https://doi.org/10.1088/0964-1726/11/3/301

    Article  CAS  Google Scholar 

  113. Wandowski T, Malinowski PH, Ostachowicz WM (2016) Delamination detection in CFRP panels using EMI method with temperature compensation. Compos Struct 151:99–107. https://doi.org/10.1016/j.compstruct.2016.02.056

    Article  Google Scholar 

  114. Baptista FG, Budoya DE, de Almeida VAD, Ulson JAC (2014) An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring. Sensors 14(1):1208–1227. https://doi.org/10.3390/s140101208

  115. Lim HJ, Kim MK, Sohn H, Park CY (2011) Impedance based damage detection under varying temperature and loading conditions. NDT&E Int 44(8):740–750. https://doi.org/10.1016/j.ndteint.2011.08.003

    Article  Google Scholar 

  116. Bastani A, Amindavar H, Shamshirsaz M, Sepehry N (2012) Identification of temperature variation and vibration disturbance in impedance-based structural health monitoring using piezoelectric sensor array method. Struct Health Monit 11(3):305–314. https://doi.org/10.1177/1475921711427486

    Article  Google Scholar 

  117. Hong DS, Nguyen KD, Lee IC, Kim JT (2012) Temperature-compensated damage monitoring by using wireless acceleration-impedance sensor nodes in steel girder connection. Int J Distrib Sens Netw 8(9):167120:1–167120:12. https://doi.org/10.1155/2012/167120

  118. Annamdas VGM, Soh CK (2010) Application of electromechanical impedance technique for engineering structures: Review and future issues. J Intell Mater Syst Struct 21(1):41–59. https://doi.org/10.1177/1045389X09352816

    Article  CAS  Google Scholar 

  119. Na WS, Baek J (2018) A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures. Sensors 18(5):1307. https://doi.org/10.3390/s18051307

    Article  CAS  Google Scholar 

  120. Cole PT (1985) Using acoustic emission (AE) to locate and identify defects in composite structures. Compos Struct 3(3–4):259–267. https://doi.org/10.1016/0263-8223(85)90057-1

    Article  Google Scholar 

  121. Mba D, Rao RB (2006) Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines: bearings, pumps, gearboxes, engines, and rotating structures. Shock Vib Digest 38(1):3–16. https://doi.org/10.1177/0583102405059054

    Article  Google Scholar 

  122. Masmoudi S, El Mahi A, Turki S (2016) Fatigue behaviour and structural health monitoring by acoustic emission of E-glass/epoxy laminates with piezoelectric implant. Appl Acoust 108:50–58. https://doi.org/10.1016/j.apacoust.2015.10.024

  123. Wevers M (1997) Listening to the sound of materials: acoustic emission for the analysis of material behavior. NDT&E Int 30(2):99–106. https://doi.org/10.1016/S0963-8695(96)00051-5

    Article  CAS  Google Scholar 

  124. Mechraoui S-E, Laksimi A, Benmedakhene S (2012) Reliability of damage mechanism localisation by acoustic emission on glass/epoxy composite material plate. Compos Struct 94(5):1483–1494. https://doi.org/10.1016/j.compstruct.2011.11.037

    Article  Google Scholar 

  125. Huang M, Jiang L, Liaw PK (1998) Using acoustic emission in fatigue and fracture materials research. JOM-e 50(11):1–14. http://www.tms.org/pubs/journals/JOM/9811/Huang/Huang-9811.html

  126. Scott M, Bannister M, Herszberg I, Li H, Thomson R (2005) Structural health monitoring - the future of advanced composite structures. In: Structural health monitoring 2005: advancements and challenges for implementation. DEStech Publications, Inc.

    Google Scholar 

  127. Silva-Munoz RA, Lopez-Anido RA (2009) Structural health monitoring of marine composite structural joints using embedded fiber Bragg grating strain sensors. Compos Struct 89(2):224–234. https://doi.org/10.1016/j.compstruct.2008.07.027

  128. Furstenau N, Jansen DD, Schmidt W (1993) In-flight strain measurements on structurally integrated composite plates using fiber-optic interferometric strain gauges. Smart Mater Struct 2:147–156. https://doi.org/10.1088/0964-1726/2/3/002

    Article  Google Scholar 

  129. Kurnyta A, Zielinski W, Reymer P, Dziendzikowski M, Dragan K (2018) In flight load determination in critical structure elements based on operational load monitoring system. In: Proceedings of the 9th European workshop on structural health monitoring, Manchester, UK, 10–13 July

    Google Scholar 

  130. Takeda S, Okabe Y, Takeda N (2002) Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors. Compos A Appl Sci Manuf 33(7):971–980. https://doi.org/10.1016/S1359-835X(02)00036-2

    Article  Google Scholar 

  131. Takeda S, Okabe Y, Yamamoto T, Takeda N (2003) Detection of edge delamination in CFRP laminates under cyclic loading using small-diameter FBG sensors. Compos Sci Technol 63(13):1885–1894. https://doi.org/10.1016/S0266-3538(03)00159-3

    Article  Google Scholar 

  132. Takeda S, Minakuchi S, Okabe Y, Takeda N (2005) Delamination monitoring of laminated composites subjected to low-velocity impact using small-diameter FBG sensors. Compos A Appl Sci Manuf 36(7):903–908. https://doi.org/10.1016/j.compositesa.2004.12.005

    Article  CAS  Google Scholar 

  133. Grassia L, Iannone M, Califano A, D’Amore A (2019) Strain based method for monitoring the health state of composite structures. Compos B Eng 176:107253. https://doi.org/10.1016/j.compositesb.2019.107253

    Article  Google Scholar 

  134. Alvarez-Montoya J, Carvajal-CastrillĂłn A, Sierra-PĂ©rez J (2020) In-flight and wireless damage detection in a UAV composite wing using fiber optic sensors and strain field pattern recognition. Mech Syst Signal Process 136:06526. https://doi.org/10.1016/j.ymssp.2019.106526

    Article  Google Scholar 

  135. Walker L (2004) Real time structural health monitoring—is it really this simple? In: SAMPE, Long Beach, USA, 16–20 May

    Google Scholar 

  136. Barton DP (2009) Comparative Vacuum Monitoring (CVMTM). In: Encyclopedia of structural health monitoring. Wiley. https://doi.org/10.1002/9780470061626.shm132

  137. Kousourakis A, Mouritz AP, Bannister MK (2005) Effect of internal sensor galleries on the mechanical properties of aerospace composite laminates. In: Structural health monitoring 2005: advancements and challenges for implementation. DEStech Publications, Inc.

    Google Scholar 

  138. Kousourakis A, Mouritz AP, Bannister MK (2006) Interlaminar properties of polymer laminates containing internal sensor cavities. Compos Struct 75(1–4):610–618. https://doi.org/10.1016/j.compstruct.2006.04.086

    Article  Google Scholar 

  139. Kousourakis A, Bannister MK, Mouritz AP (2008) Tensile and compressive properties of polymer laminates containing internal sensor cavities. Compos A Appl Sci Manuf 39(9):1394–1403. https://doi.org/10.1016/j.compositesa.2008.05.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GĂ©rald Franz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Franz, G., Hassan, M.H. (2023). Structural Health Monitoring of Laminated Materials for Aerospace Application. In: Ariffin, A.H., Latif, N.A., Mahmod, M.F.b., Mohamad, Z.B. (eds) Structural Integrity and Monitoring for Composite Materials. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-19-6282-0_1

Download citation

Publish with us

Policies and ethics