Skip to main content

Efficient Deep Learning of Kerr Nonlinearity in Fiber-Optic Channels Using a Convolutional Recurrent Neural Network

  • 573 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1434)

Abstract

The impairments arising from the Kerr nonlinearity in optical fiber are a major obstacle in fiber-optic transmission systems. To compensate for these impairments at the receiver, the complexity of the digital signal processing algorithms must be reduced. Deep learning-based equalizers have shown to be promising in this area. However, their efficient implementation in practical systems is still an open problem. In this paper, we propose a low-complexity convolutional recurrent neural network (CNN+RNN) for deep learning of Kerr nonlinearity effects in long-haul optical fiber channels governed by the nonlinear Schrödinger equation. This approach reduces computational complexity by balancing the computational load via capturing short-range temporal features using multi-channel strided convolution layers with ReLU activation, and the long-range temporal features using a unidirectional vanilla recurrent layer. We demonstrate that for a 16-QAM 64 GBd optical transmission system over 1120 km of standard single-mode fiber with 14 spans, the proposed model approaches the performance of digital backpropagation and achieves superior or comparable performance to recently-proposed MLP, CNN+MLP, bi-RNN, bi-GRU, bi-LSTM, and CNN+bi-LSTM-based equalizers in the literature, with substantially fewer floating-point operations (FLOPs) than these models.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    An optical link is typically divided into multiple spans due to fiber loss. At the end of each span, an amplification process compensates for the attenuation.

  2. 2.

    Step per span is a term used in the context of SSFM (and consequently DBP), specifying the resolution that is considered in this algorithm to mimic the fiber span.

  3. 3.

    This technique leads to the phenomenon of total internal reflection, which confines the light beam into the core and lets propagation of the pulse.

  4. 4.

    The optical fiber segment between two amplifiers is called one span of the optical fiber.

References

  1. Kikuchi, K.: Fundamentals of coherent optical fiber communications. IEEE J. Lightw. Technol. 34, 157–179 (2015)

    CrossRef  Google Scholar 

  2. Essiambre, R.-J., Kramer, G., Winzer, P.J., Foschini, G.J., Goebel, B.: Capacity limits of optical fiber networks. IEEE J. Lightw. Technol. 28, 662–701 (2010)

    CrossRef  Google Scholar 

  3. Agrawal, G.P.: Fiber-Optic Communication Systems, vol. 222. Wiley (2012)

    Google Scholar 

  4. Cartledge, J.C., Guiomar, F.P., Kschischang, F.R., Liga, G., Yankov, M.P.: Digital signal processing for fiber nonlinearities. Opt. Express 25, 1916–1936 (2017)

    CrossRef  Google Scholar 

  5. Winzer, P.J., Neilson, D.T., Chraplyvy, A.R.: Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt. Express 26, 24190–24239 (2018)

    CrossRef  Google Scholar 

  6. Savory, S.J.: Digital coherent optical receivers: algorithms and subsystems. IEEE J. Sel. Top. Quantum Electron. 16, 1164–1179 (2010)

    CrossRef  Google Scholar 

  7. Yousefi, M.I., Kschischang, F.R.: Information transmission using the nonlinear Fourier transform, part i, ii, iii. IEEE Trans. Inf. Theory 60, 4312–4369 (2014)

    CrossRef  MATH  Google Scholar 

  8. Ip, E., Kahn, J.M.: Compensation of dispersion and nonlinear impairments using digital backpropagation. IEEE J. Lightw. Technol. 26(20), 3416–3425 (2008)

    CrossRef  Google Scholar 

  9. Kramer, G., Yousefi, M.I., Kschischang, F.R.: Upper bound on the capacity of a cascade of nonlinear and noisy channels. In: IEEE Information Theory Workshop (ITW), pp. 1–4 (2015)

    Google Scholar 

  10. Secondini, M., Marsella, D., Forestieri, E.: Enhanced split-step Fourier method for digital backpropagation. In: European Conference on Optical Communication (ECOC), pp. 1–3 (2014)

    Google Scholar 

  11. Guiomar, F.P., Reis, J.D., Teixeira, A.L., Pinto, A.N.: Mitigation of intra-channel nonlinearities using a frequency-domain volterra series equalizer. Opt. Express 20, 1360–1369 (2012)

    CrossRef  Google Scholar 

  12. Wang, Y., Tao, L., Huang, X., Shi, J., Chi, N.: Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer. IEEE Photonics J. 7, 1–7 (2015)

    CrossRef  Google Scholar 

  13. Agazzi, O.E., Hueda, M.R., Carrer, H.S., Crivelli, D.E.: Maximum-likelihood sequence estimation in dispersive optical channels. IEEE J. Lightw. Technol. 23(2), 749–763 (2005)

    CrossRef  Google Scholar 

  14. Alić, N., Papen, G.C., Saperstein, R.E., Milstein, L.B., Fainman, Y.: Signal statistics and maximum likelihood sequence estimation in intensity modulated fiber optic links containing a single optical preamplifier. Opt. Express 13(12), 4568–4579 (2005)

    CrossRef  Google Scholar 

  15. Jäger, M., Rankl, T., Speidel, J., Bülow, H., Buchali, F.: Performance of turbo equalizers for optical pmd channels. IEEE J. Lightw. Technol. 24(3), 1226 (2006)

    CrossRef  Google Scholar 

  16. Tüchler, M., Singer, A.C.: Turbo equalization: an overview. IEEE Trans. Inf. Theory 57(2), 920–952 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Napoli, A., Maalej, Z., Sleiffer, V.A., Kuschnerov, M., Rafique, D., Timmers, E., Spinnler, B., Rahman, T., Coelho, L.D., Hanik, N.: Reduced complexity digital back-propagation methods for optical communication systems. IEEE J. Lightw. Technol. 32(7), 1351–1362 (2014)

    CrossRef  Google Scholar 

  18. Musumeci, F., Rottondi, C., Nag, A., Macaluso, I., Zibar, D., Ruffini, M., Tornatore, M.: An overview on application of machine learning techniques in optical networks. IEEE Commun. Surv. Tutor. 21, 1383–1408 (2019)

    CrossRef  Google Scholar 

  19. Shahkarami, A., Yousefi, M.I., Jaouen, Y.: Efficient deep learning of nonlinear fiber-optic communications using a convolutional recurrent neural network. In: IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 668–673 (2021)

    Google Scholar 

  20. Shahkarami, A., Yousefi, M.I., Jaouen, Y.: Attention-based neural network equalization in fiber-optic communications. In: Asia Commununication Photonics Conference (ACP), pp. M5H–3 (2021)

    Google Scholar 

  21. Freire, P.J., Osadchuk, Y., Spinnler, B., Schairer, W., Napoli, A., Costa, N., Prilepsky, J.E., Turitsyn, S.K.: Experimental study of deep neural network equalizers performance in optical links. In: Optical Fiber Communication Conference and Exposition (OFC), pp. M3H–2 (2021)

    Google Scholar 

  22. Catanese, C., Triki, A., Pincemin, E., Jaouën, Y.: A survey of neural network applications in fiber nonlinearity mitigation. In: International Conference on Transparent Optical Network (ICTON), pp. 1–4 (2019)

    Google Scholar 

  23. Eriksson, T.A., Bülow, H., Leven, A.: Applying neural networks in optical communication systems: possible pitfalls. IEEE Photonics Technol. Lett. 29, 2091–2094 (2017)

    CrossRef  Google Scholar 

  24. Koike-Akino, T., Wang, Y., Millar, D.S., Kojima, K., Parsons, K.: Neural turbo equalization: deep learning for fiber-optic nonlinearity compensation. IEEE J. Lightw. Technol. 38, 3059–3066 (2020)

    Google Scholar 

  25. Balatsoukas-Stimming, A., Studer, C.: Deep unfolding for communications systems: a survey and some new directions. In: IEEE International Workshop Signal Processing System (SiPS), pp. 266–271 (2019)

    Google Scholar 

  26. Catanese, C., Triki, A., Pincemin, E., Jaouën, Y.: A survey of neural network applications in fiber nonlinearity mitigation. In: Proceedings of the International Conference on Transparent Optical Networks (ICTON), pp. 1–4, IEEE (2019)

    Google Scholar 

  27. Häger, C., Pfister, H.D.: Nonlinear interference mitigation via deep neural networks. In: Optical Fiber Communication Conference and Exposition (OFC), pp. 1–3 (2018)

    Google Scholar 

  28. Häger, C., Pfister, H.D.: Deep learning of the nonlinear Schrödinger equation in fiber-optic communications. In: IEEE International Symposium on Information Theory (ISIT), pp. 1590–1594 (2018)

    Google Scholar 

  29. Butler, R.M., Hager, C., Pfister, H.D., Liga, G., Alvarado, A.: Model-based machine learning for joint digital backpropagation and PMD compensation. IEEE J. Lightw. Technol. 1 (2020)

    Google Scholar 

  30. Sidelnikov, O., Redyuk, A., Sygletos, S., Fedoruk, M., Turitsyn, S.: Advanced convolutional neural networks for nonlinearity mitigation in long-haul WDM transmission systems. IEEE J. Lightw. Technol. 39, 2397–2406 (2021)

    CrossRef  Google Scholar 

  31. Jiang, X., Wang, D., Fan, Q., Zhang, M., Lu, C., Lau, A.P.T.: Solving the nonlinear schrödinger equation in optical fibers using physics-informed neural network. In: Optical Fiber Communication Conference and Exposition (OFC), pp. 1–3 (2021)

    Google Scholar 

  32. Freire, P.J., Osadchuk, Y., Spinnler, B., Napoli, A., Schairer, W., Costa, N., Prilepsky, J.E., Turitsyn, S.K.: Performance versus complexity study of neural network equalizers in coherent optical systems. IEEE J. Lightw. Technol. 39(19), 6085–6096 (2021)

    CrossRef  Google Scholar 

  33. Catanese, C., Ayassi, R., Pincemin, E., Jaouën, Y.: A fully connected neural network approach to mitigate fiber nonlinear effects in 200G DP-16-QAM transmission system. In: International Conference on Transparent Optical Networks (ICTON), pp. 1–4 (2020)

    Google Scholar 

  34. Zhang, H., Yu, Z., Shu, L., Wan, Z., Zhao, Y., Xu, K.: Fiber nonlinearity equalizer using MLP-ANN for coherent optical OFDM. In: International Conference on Optical Communications and Networks (ICOCN), pp. 1–3 (2019)

    Google Scholar 

  35. Sidelnikov, O., Redyuk, A., Sygletos, S.: Equalization performance and complexity analysis of dynamic deep neural networks in long haul transmission systems. Opt. Express 26, 32765–32776 (2018)

    CrossRef  Google Scholar 

  36. Li, P., Yi, L., Xue, L., Hu, W.: 56 Gbps IM/DD PON based on 10G-class optical devices with 29 dB loss budget enabled by machine learning. In: Optical Fiber Communication Conference and Exposition (OFC), pp. 1–3 (2018)

    Google Scholar 

  37. Chuang, C., Liu, L., Wei, C., Liu, J., Henrickson, L., Huang, W., Wang, C., Chen, Y., Chen, J.: Convolutional neural network based nonlinear classifier for 112-Gbps high speed optical link. In: Optical Fiber Communication Conference and Exposition (OFC), pp. 1–3 (2018)

    Google Scholar 

  38. Li, P., Yi, L., Xue, L., Hu, W.: 100Gbps IM/DD transmission over 25km SSMF using 20G-class DML and PIN enabled by machine learning. In: Optical Fiber Communication Conference and Exposition (OFC), pp. 1–3 (2018)

    Google Scholar 

  39. Deligiannidis, S., Mesaritakis, C., Bogris, A.: Performance and complexity analysis of bi-directional recurrent neural network models versus Volterra nonlinear equalizers in digital coherent systems. IEEE J. Lightw. Technol. 39, 5791–5798 (2021)

    CrossRef  Google Scholar 

  40. Liu, X., Wang, Y., Wang, X., Xu, H., Li, C., Xin, X.: Bi-directional gated recurrent unit neural network based nonlinear equalizer for coherent optical communication system. Opt. Express 29, 5923–5933 (2021)

    CrossRef  Google Scholar 

  41. Deligiannidis, S., Bogris, A., Mesaritakis, C., Kopsinis, Y.: Compensation of fiber nonlinearities in digital coherent systems leveraging long short-term memory neural networks. IEEE J. Lightw. Technol. 38, 5991–5999 (2020)

    CrossRef  Google Scholar 

  42. Gagné, C., Zeng, M., Rusch, L.A., et al.: Recurrent neural networks achieving mlse performance for optical channel equalization. Opt. Express 29, 13033–13047 (2021)

    CrossRef  Google Scholar 

  43. Karanov, B., Lavery, D., Bayvel, P., Schmalen, L.: End-to-end optimized transmission over dispersive intensity-modulated channels using bidirectional recurrent neural networks. Opt. Express 27, 19650–19663 (2019)

    CrossRef  Google Scholar 

  44. Karanov, B., Chagnon, M., Aref, V., Ferreira, F., Lavery, D., Bayvel, P., Schmalen, L.: Experimental investigation of deep learning for digital signal processing in short reach optical fiber communications. In: IEEE International Workshop Signal Processing System (SiPS), pp. 1–6 (2020)

    Google Scholar 

  45. Hecht-Nielsen, R.: Theory of the backpropagation neural network. In: Neural Networks for Perception, pp. 65–93. Elsevier (1992)

    Google Scholar 

  46. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

    Google Scholar 

  47. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31, 1235–1270 (2019)

    CrossRef  MathSciNet  MATH  Google Scholar 

  48. Shahkarami, A., Yousefi, M.I., Jaouen, Y.: Fiber-optic transmission system modeling, accompanied with the implementation of TX and RX DSP chain (2022). https://github.com/FONTE-EID/fiber-optic-transmission-system-modeling/. (Accessed 20 May 2022)

  49. Cisco Systems, I.: Introduction to optical fibers, db, attenuation and measurements (2022). https://www.cisco.com/c/en/us/support/docs/optical/synchronous-digital-hierarchy-sdh/29000-db-29000.html/. (Accessed 20 May 2022)

  50. TeleGeography.: C-lion1 submarine cable (2022). https://www.submarinecablemap.com/submarine-cable/c-lion1/. (Accessed 20 May 2022)

  51. Kotlyar, O., Pankratova, M., Kamalian-Kopae, M., Vasylchenkova, A., Prilepsky, J.E., Turitsyn, S.K.: Combining nonlinear Fourier transform and neural network-based processing in optical communications. Opt. Lett. 45, 3462–3465 (2020)

    CrossRef  Google Scholar 

  52. Neskorniuk, V., Carnio, A., Bajaj, V., Marsella, D., Turitsyn, S.K., Prilepsky, J.E., Aref, V.: End-to-end deep learning of long-haul coherent optical fiber communications via regular perturbation model. In: European Conference on Optical Communication (ECOC), pp. 1–4 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abtin Shahkarami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahkarami, A., Yousefi, M.I., Jaouen, Y. (2023). Efficient Deep Learning of Kerr Nonlinearity in Fiber-Optic Channels Using a Convolutional Recurrent Neural Network. In: Wani, M.A., Palade , V. (eds) Deep Learning Applications, Volume 4. Advances in Intelligent Systems and Computing, vol 1434. Springer, Singapore. https://doi.org/10.1007/978-981-19-6153-3_13

Download citation