Skip to main content

A Rapid One-Stage End to End Hyperspectral Target Detection Model

  • Conference paper
  • First Online:
Proceedings of 2022 10th China Conference on Command and Control (C2 2022)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 949))

Included in the following conference series:

  • 1068 Accesses

Abstract

A hyperspectral target detection (HTD) task is essentially a binary classification task focusing on distinguishing specific targets from various backgrounds. However, most HTD methods consist of two stages, i.e. calculating a similarity score map and then producing the final detection map with a selected threshold, which cause cumulative errors and may influence the detection accuracy. In this paper, inspired by the risk estimation strategy and patch-free framework in hyperspectral classification tasks, a rapid one-stage end to end HTD model is proposed, which only makes use of target pixel samples to set up special binary classification tasks under HTD to avoid cumulative errors and constructs an end to end patch-free network to make use of the full image. Extensive experiments were made on three benchmark datasets and the experimental results indicate that our model can achieve superior performances in HTD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Sig. Process. Mag. 19(1), 29–43 (2002)

    Article  Google Scholar 

  2. Robey, F.C., Fuhrmann, D.R., Kelly, E.J., Nitzberg, R.: A CFAR adaptive matched filter detector. IEEE Trans. Aerosp. Electron. Syst. 28(1), 208–216 (1992)

    Article  Google Scholar 

  3. Geng, X., Ji, L., Sun, K., Zhao, Y.: CEM: more bands, better performance. IEEE Geosci. Remote Sens. Lett. 11(11), 1876–1880 (2014)

    Article  Google Scholar 

  4. Zhao, R., Shi, Z., Zou, Z., Zhang, Z.: Ensemble-based cascaded constrained energy minimization for hyperspectral target detection. Remote Sens. 11(11), 1310 (2019)

    Article  Google Scholar 

  5. Manolakis, D., Marden, D., Shaw, G.A.: Hyperspectral image processing for automatic target detection applications. Lincoln Lab. J. 14(1), 79–116 (2003)

    Google Scholar 

  6. Kwon, H., Nasrabadi, N.M.: Kernel spectral matched filter for hyperspectral image. Int. J. Comput. Vis. 71(2), 127–141 (2007)

    Article  Google Scholar 

  7. Capobianco, L., Garzelli, A., Camps-Valls, G.: Target detection with semisupervised kernel orthogonal subspace projection. IEEE Trans. Geosci. Remote Sens. 47(11), 3822–3833 (2009)

    Article  Google Scholar 

  8. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Sparse representation for target detection in hyperspectral image. IEEE J. Sel. Top. Sig. Process. 5(3), 629–640 (2011)

    Article  Google Scholar 

  9. Zhang, Y., Du, B., Zhang, L.: A sparse representation-based binary hypothesis model for target detection in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 53(3), 1346–1354 (2015)

    Article  Google Scholar 

  10. Wang, S., Wang, X., Zhang, L., Zhong, Y.: Auto-AD: autonomous hyperspectral anomaly detection network based on fully convolutional autoencoder. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2022)

    Google Scholar 

  11. Li, W., Wu, G., Du, Q.: Transferred deep learning for hyperspectral target detection. In: Proceedings of the IEEE International Geoscience on Remote Sensing Symposium (IGARSS), July 2017, pp. 5177–5180 (2017)

    Google Scholar 

  12. Du, J., Li, Z.: A hyperspectral target detection framework with subtraction pixel pair features. IEEE Access 6, 45562–45577 (2018)

    Article  Google Scholar 

  13. Zhang, G., Zhao, S., Li, W., Du, Q., Ran, Q., Tao, R.: HTD-net: a deep convolutional neural network for target detection in hyperspectral imagery. Remote Sens. 12(9), 1489 (2020)

    Article  Google Scholar 

  14. Jain, S., White, M., Radivojac, P.: Estimating the class prior and posterior from noisy positives and unlabeled data. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29, pp. 2693–2701. Curran Associates Inc. (2016)

    Google Scholar 

  15. Zhao, H., et al.: Mapping the distribution of invasive tree species using deep one-class classification in the tropical montane landscape of Kenya. ISPRS J. Photogramm. Remote. Sens. 187, 328–344 (2022). ISSN 0924-2716

    Article  Google Scholar 

  16. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  17. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  18. Li, S., Zhang, K., Hao, Q., Duan, P., Kang, X.: Hyperspectral anomaly detection with multiscale attribute and edge-preserving filters. IEEE Geosci. Remote Sens. Lett. 15(10), 1605–1609 (2018)

    Article  Google Scholar 

  19. Zhong, Y., Hu, X., Luo, C., Wang, X., Zhao, J., Zhang, L.: WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sens. Environ. 250, 112012 (2020)

    Article  Google Scholar 

  20. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Chinese Institute of Command and Control

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, X., Zhao, H., Wang, X., Zhong, Y. (2022). A Rapid One-Stage End to End Hyperspectral Target Detection Model. In: Proceedings of 2022 10th China Conference on Command and Control. C2 2022. Lecture Notes in Electrical Engineering, vol 949. Springer, Singapore. https://doi.org/10.1007/978-981-19-6052-9_55

Download citation

Publish with us

Policies and ethics