Skip to main content

Stem Cells and Therapies in Cardiac Regeneration

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Ischemic heart diseases (IHD) are a significant cause of death all over the world increasing the cardiovascular disease (CVD) burden. Blockade of coronary arteries followed by an infarct in the heart is the basis of the heart failure (HF), the most significant health issue worldwide. Inadequate cardiac regeneration and decreased number of functional cardiomyocytes are the major underlying cause that leads to the fatality. Therefore, new therapies and methods to remuscularize and regenerate the damaged cardiac myocytes toward proliferation are an immediate requirement. This leads to novel strategies like utilizing stem cells (SCs) or increasing the number of cell cycles of the cardiac myocytes for regeneration of the heart muscle. SCs and embryonic stem cells (ESCs) played a very significant role in differentiating into cardiomyocytes both in vitro and in vivo. The heart also hosts multipotent progenitor cells which along with the ESCs can assist in the development of the specific cell types that would eventually treat various heart diseases. The potential chances of rejection of the ESCs by the immune system drifted in the direction of induced pluripotent stem cells (iPSC) that are tolerated by the host immune response. Apart from the utility of the SCs in the proliferation of the cardiac myocytes, the role of noncoding RNAs also played a significant role. Several studies have reported that either inhibition or upregulation of certain miRNAs improves the left-ventricular (LV) function after myocardial infarction (MI). Although miRNAs have proved to be a promising potential therapy for the cardiac regeneration by the proliferation of the cardiac myocytes, still these investigations in human are scarce. This chapter aims at reviewing the various means for cardiac regeneration and also highlight the existing gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed RE, Anzai T, Chanthra N, Uosaki H (2020) A brief review of current maturation methods for human induced pluripotent stem cells-derived cardiomyocytes. Front Cell Dev Biol 8:178

    Article  Google Scholar 

  • Appasani K (2008) MicroRNAs: from basic science to disease biology

    Google Scholar 

  • Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S et al (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494(7435):100–104

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  Google Scholar 

  • Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104(35):14068–14073

    Article  CAS  Google Scholar 

  • Becker AM, Rubart M, Field LJ (2011) Inducing embryonic stem cells to become cardiomyocytes. In: Cohen IS, Gaudette GR (eds) Regenerating the heart: stem cells and the cardiovascular system. Humana Press, Totowa, NJ, pp 7–24

    Chapter  Google Scholar 

  • Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R et al (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344(23):1750–1757

    Article  CAS  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  Google Scholar 

  • Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ et al (2003) Dicer is essential for mouse development. Nat Genet 35(3):215–217

    Article  CAS  Google Scholar 

  • Bongso A, Fong CY, Ng SC, Ratnam S (1994) Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 9(11):2110–2117

    Article  CAS  Google Scholar 

  • Borden A, Kurian J, Nickoloff E, Yang Y, Troupes C, Ibetti J et al (2019) Transient introduction of miR-294 in the heart promotes cardiomyocyte cell cycle reentry after injury. Circ Res

    Google Scholar 

  • Burger K, Gullerova M (2015) Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat Rev Mol Cell Biol 16(7):417–430

    Article  CAS  Google Scholar 

  • Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10(1):16–28

    Article  CAS  Google Scholar 

  • Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11(8):855–860

    Article  CAS  Google Scholar 

  • Cahill TJ, Kharbanda RK (2017) Heart failure after myocardial infarction in the era of primary percutaneous coronary intervention: mechanisms, incidence and identification of patients at risk. World J Cardiol 9(5):407–415

    Article  Google Scholar 

  • Cambria E, Pasqualini FS, Wolint P, Gunter J, Steiger J, Bopp A et al (2017) Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. NPJ Regen Med 2:17

    Article  Google Scholar 

  • Chen JF, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z et al (2008) Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 105(6):2111–2116

    Article  CAS  Google Scholar 

  • Chen J, Huang ZP, Seok HY, Ding J, Kataoka M, Zhang Z et al (2013) mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 112(12):1557–1566

    Article  CAS  Google Scholar 

  • Choi SH, Jung SY, Kwon SM, Baek SH (2012) Perspectives on stem cell therapy for cardiac regeneration. Advances and challenges. Circ J 76(6):1307–1312

    Article  Google Scholar 

  • Choi WY, Gemberling M, Wang J, Holdway JE, Shen MC, Karlstrom RO et al (2013) In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration. Development 140(3):660–666

    Article  CAS  Google Scholar 

  • Chong MM, Zhang G, Cheloufi S, Neubert TA, Hannon GJ, Littman DR (2010) Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev 24(17):1951–1960

    Article  CAS  Google Scholar 

  • Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277

    Article  CAS  Google Scholar 

  • Choumerianou DM, Dimitriou H, Kalmanti M (2008) Stem cells: promises versus limitations. Tissue Eng Part B Rev 14(1):53–60

    Article  CAS  Google Scholar 

  • Del Alamo JC, Lemons D, Serrano R, Savchenko A, Cerignoli F, Bodmer R et al (2016) High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. Biochim Biophys Acta 1863(7 Pt B):1717–1727

    Article  Google Scholar 

  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432(7014):231–235

    Article  CAS  Google Scholar 

  • Diez-Cunado M, Wei K, Bushway PJ, Maurya MR, Perera R, Subramaniam S et al (2018) miRNAs that Induce Human Cardiomyocyte Proliferation Converge on the Hippo Pathway. Cell Rep 23(7):2168–2174

    Article  CAS  Google Scholar 

  • Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132(21):4645–4652

    Article  CAS  Google Scholar 

  • Engel FB, Hsieh PC, Lee RT, Keating MT (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci U S A 103(42):15546–15551

    Article  CAS  Google Scholar 

  • Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S et al (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492(7429):376–381

    Article  CAS  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  Google Scholar 

  • Forman JJ, Legesse-Miller A, Coller HA (2008) A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A 105(39):14879–14884

    Article  CAS  Google Scholar 

  • Gabisonia K, Prosdocimo G, Aquaro GD, Carlucci L, Zentilin L, Secco I et al (2019) MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569(7756):418–422

    Article  CAS  Google Scholar 

  • Gao F, Kataoka M, Liu N, Liang T, Huang ZP, Gu F et al (2019) Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat Commun 10(1):1802

    Article  Google Scholar 

  • Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20(1):21–37

    Article  CAS  Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524

    Article  CAS  Google Scholar 

  • Harris K, Aylott M, Cui Y, Louttit JB, McMahon NC, Sridhar A (2013) Comparison of electrophysiological data from human-induced pluripotent stem cell-derived cardiomyocytes to functional preclinical safety assays. Toxicol Sci 134(2):412–426

    Article  CAS  Google Scholar 

  • Hata A (2013) Functions of microRNAs in cardiovascular biology and disease. Annu Rev Physiol 75:69–93

    Article  CAS  Google Scholar 

  • Hemberger M, Yang W, Natale D, Brown TL, Dunk C, Gargett CE et al (2008) Stem cells from fetal membranes—a workshop report. Placenta 29(Suppl A):S17–S19

    Article  Google Scholar 

  • Horvitz HR, Sulston JE (1980) Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96(2):435–454

    Article  CAS  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386

    Article  CAS  Google Scholar 

  • Institute of Medicine (US) Committee on Social Security Cardiovascular Disability Criteria (2010) Cardiovascular disability: updating the social security listings. Washington, DC

    Google Scholar 

  • Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P (1998) Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A 95(15):8801–8805

    Article  CAS  Google Scholar 

  • Kamakura T, Makiyama T, Sasaki K, Yoshida Y, Wuriyanghai Y, Chen J et al (2013) Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ J 77(5):1307–1314

    Article  CAS  Google Scholar 

  • Karakikes I, Ameen M, Termglinchan V, Wu JC (2015) Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res 117(1):80–88

    Article  CAS  Google Scholar 

  • Kikuchi K, Poss KD (2012) Cardiac regenerative capacity and mechanisms. Annu Rev Cell Dev Biol 28:719–741

    Article  CAS  Google Scholar 

  • Kussauer S, David R, Lemcke H (2019) hiPSCs derived cardiac cells for drug and toxicity screening and disease modeling: what micro- electrode-array analyses can tell us. Cell 8(11)

    Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024

    Article  CAS  Google Scholar 

  • Lakshmipathy U, Verfaillie C (2005) Stem cell plasticity. Blood Rev 19(1):29–38

    Article  Google Scholar 

  • Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433(7026):647–653

    Article  CAS  Google Scholar 

  • Leach JP, Heallen T, Zhang M, Rahmani M, Morikawa Y, Hill MC et al (2017) Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550(7675):260–264

    Article  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  CAS  Google Scholar 

  • Lee R, Feinbaum R, Ambros V (2004) A short history of a short RNA. Cell 116(2 Suppl):S89–S92, 1 p following S6

    Article  CAS  Google Scholar 

  • Lesizza P, Prosdocimo G, Martinelli V, Sinagra G, Zacchigna S, Giacca M (2017) Single-dose intracardiac injection of pro-regenerative microRNAs improves cardiac function after myocardial infarction. Circ Res 120(8):1298–1304

    Article  CAS  Google Scholar 

  • Lewandowski J, Rozwadowska N, Kolanowski TJ, Malcher A, Zimna A, Rugowska A et al (2018) The impact of in vitro cell culture duration on the maturation of human cardiomyocytes derived from induced pluripotent stem cells of myogenic origin. Cell Transplant 27(7):1047–1067

    Article  Google Scholar 

  • Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science (New York, NY) 303(5654):95–98

    Article  CAS  Google Scholar 

  • Lundy SD, Zhu WZ, Regnier M, Laflamme MA (2013) Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 22(14):1991–2002

    Article  CAS  Google Scholar 

  • Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR. Proc Natl Acad Sci U S A 104(23):9667–9672

    Article  CAS  Google Scholar 

  • Magadum A, Ding Y, He L, Kim T, Vasudevarao MD, Long Q et al (2017) Live cell screening platform identifies PPARdelta as a regulator of cardiomyocyte proliferation and cardiac repair. Cell Res 27(8):1002–1019

    Article  CAS  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638

    Article  CAS  Google Scholar 

  • McKeithan WL, Feyen DAM, Bruyneel AAN, Okolotowicz KJ, Ryan DA, Sampson KJ et al (2020) Reengineering an antiarrhythmic drug using patient hiPSC cardiomyocytes to improve therapeutic potential and reduce toxicity. Cell Stem Cell 27(5):813–21 e6

    Article  CAS  Google Scholar 

  • Mendis S, Puska P, Norrving B, World Health O, World Heart F, World Stroke O. Global atlas on cardiovascular disease prevention and control/edited by: Shanthi Mendis ... [et al.] Geneva: World Health Organization; 2011

    Google Scholar 

  • Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921

    Article  CAS  Google Scholar 

  • Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S et al (2012) A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep 2(5):1448–1460

    Article  CAS  Google Scholar 

  • Murry CE, Reinecke H, Pabon LM (2006) Regeneration gaps: observations on stem cells and cardiac repair. J Am Coll Cardiol 47(9):1777–1785

    Article  Google Scholar 

  • Young DB (2010) Control of cardiac output. Colloquium series on integrated systems physiology: from molecule to function to disease. San Rafael, CA

    Google Scholar 

  • Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ et al (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4):e38–e360

    Google Scholar 

  • Rumyantsev PP (1977) Interrelations of the proliferation and differentiation processes during cardiact myogenesis and regeneration. Int Rev Cytol 51:186–273

    CAS  Google Scholar 

  • Srivastava D, Ivey KN (2006) Potential of stem-cell-based therapies for heart disease. Nature 441(7097):1097–1099

    Article  CAS  Google Scholar 

  • Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M et al (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432):433–436

    Article  CAS  Google Scholar 

  • Patra C, Talukdar S, Novoyatleva T, Velagala SR, Muhlfeld C, Kundu B et al (2012) Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials 33(9):2673–2680

    Article  CAS  Google Scholar 

  • Reinecke H, Minami E, Zhu WZ, Laflamme MA (2008) Cardiogenic differentiation and transdifferentiation of progenitor cells. Circ Res 103(10):1058–1071

    Article  CAS  Google Scholar 

  • Thomas ED, Lochte HL Jr, Cannon JH, Sahler OD, Ferrebee JW (1959) Supralethal whole body irradiation and isologous marrow transplantation in man. J Clin Invest 38:1709–1716

    Article  CAS  Google Scholar 

  • Weissman IL (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287(5457):1442–1446

    Article  CAS  Google Scholar 

  • Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4(3):423–433

    Article  Google Scholar 

  • Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100(21):12313–12318

    Article  CAS  Google Scholar 

  • Wobus AM, Boheler KR (2005) Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85(2):635–678

    Article  CAS  Google Scholar 

  • Sreenivas SD, Rao AS, Satyavani SS, Reddy BH, Vasudevan S (2011) Where will the stem cells lead us? Prospects for dentistry in the 21 century. J Indian Soc Periodontol 15(3):199–204

    Article  Google Scholar 

  • Rubart M, Field LJ (2007) ES cells for troubled hearts. Nat Biotechnol 25(9):993–994

    Article  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  • Yoshida Y, Yamanaka S (2017) Induced pluripotent stem cells 10 years later: for cardiac applications. Circ Res 120(12):1958–1968

    Article  CAS  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science (New York, NY) 282(5391):1145–1147

    Article  CAS  Google Scholar 

  • Tohyama S, Fukuda K (2016) Future treatment of heart failure using human iPSC-derived cardiomyocytes. In: Nakanishi T, Markwald RR, Baldwin HS, Keller BB, Srivastava D, Yamagishi H (eds) Etiology and morphogenesis of congenital heart disease: from gene function and cellular interaction to morphology. Springer, Tokyo, pp 25–31

    Chapter  Google Scholar 

  • Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y et al (2016) Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538(7625):388–391

    Article  CAS  Google Scholar 

  • Vreeker A, van Stuijvenberg L, Hund TJ, Mohler PJ, Nikkels PG, van Veen TA (2014) Assembly of the cardiac intercalated disk during pre- and postnatal development of the human heart. PLoS One 9(4):e94722

    Article  Google Scholar 

  • Paik DT, Chandy M, Wu JC (2020) Patient and disease-specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacol Rev 72(1):320–342

    Article  CAS  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    Article  CAS  Google Scholar 

  • O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402

    Article  Google Scholar 

  • Olson EN (2014) MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med 6(239):239ps3

    Article  Google Scholar 

  • van Rooij E, Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO Mol Med 6(7):851–864

    Article  Google Scholar 

  • Rao PK, Toyama Y, Chiang HR, Gupta S, Bauer M, Medvid R et al (2009) Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ Res 105(6):585–594

    Article  CAS  Google Scholar 

  • Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ et al (2011a) MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 109(6):670–679

    Article  CAS  Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D et al (2013) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci U S A 110(1):187–192

    Article  CAS  Google Scholar 

  • Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L et al (2015) A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7(279):279ra38

    Article  Google Scholar 

  • Wahlquist C, Jeong D, Rojas-Munoz A, Kho C, Lee A, Mitsuyama S et al (2014) Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508(7497):531–535

    Article  CAS  Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN et al (2011b) Transient regenerative potential of the neonatal mouse heart. Science (New York, NY) 331(6020):1078–1080

    Article  CAS  Google Scholar 

  • Sadek H, Olson EN (2020) Toward the goal of human heart regeneration. Cell Stem Cell 26(1):7–16

    Article  CAS  Google Scholar 

  • Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J et al (2013) Hippo pathway effector Yap promotes cardiac regeneration. Proc Natl Acad Sci U S A 110(34):13839–13844

    Article  CAS  Google Scholar 

  • Torrini C, Cubero RJ, Dirkx E, Braga L, Ali H, Prosdocimo G et al (2019) Common regulatory pathways mediate activity of microRNAs inducing cardiomyocyte proliferation. Cell Rep 27(9):2759–71.e5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praphulla Chandra Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Renikunta, H., Chakrabarti, R., Duddu, S., Bhattacharya, A., Chakravorty, N., Shukla, P.C. (2023). Stem Cells and Therapies in Cardiac Regeneration. In: Chakravorty, N., Shukla, P.C. (eds) Regenerative Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-6008-6_7

Download citation

Publish with us

Policies and ethics