Skip to main content

Advances in Medical Imaging for Wound Repair and Regenerative Medicine

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Adult mammalian wounds commonly heal through the process of repair and leave a permanent mark—the scar. Scars typically jeopardize normal organ function and restrict full function restoration—a process called regeneration. Another major challenge in wound management is chronic wounds because of infection or metabolic diseases like diabetes. In severe cases, chronic wounds do not heal easily and can even often lead to amputations. To clinically restore and assess wounds for faster healing with minimum scarring and to evaluate the performance of therapeutic candidates, visualizing the wounds is very crucial. Imaging methods spanning a range of observable fields, depths of penetration, and resolutions are presented here that play a key role in propelling the field of wound healing and regenerative medicine. The chapter aims to have an overview of the imaging methods from macroscopic to molecular scales and enables readers to understand the key parameters and limitations that make them an ideal choice in solving a clinical problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarabi S et al (2007) Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 21(12):3250–3261

    Article  CAS  Google Scholar 

  • Afara IO et al (2021) Characterization of connective tissues using near-infrared spectroscopy and imaging. Nat Protoc 16(2):1297–1329

    Article  CAS  Google Scholar 

  • Agha R et al (2011) A review of the role of mechanical forces in cutaneous wound healing. J Surg Res 171(2):700–708

    Article  Google Scholar 

  • Albert H (2012) A survey of optical imaging techniques for assessing wound healing. Int J Intell Control Syst 17:79–85

    Google Scholar 

  • Aliahmad B et al (2019) Is thermal imaging a useful predictor of the healing status of diabetes-related foot ulcers? A pilot study. J Diabetes Sci Technol 13(3):561–567

    Article  Google Scholar 

  • Anand S et al (2014) Diffuse reflectance spectroscopy for monitoring diabetic foot ulcer—a pilot study. Opt Lasers Eng 53:1–5

    Article  Google Scholar 

  • Basiri A et al (2010) Use of a multi-spectral camera in the characterization of skin wounds. Opt Express 18(4):3244–3257

    Article  CAS  Google Scholar 

  • Ben Moshe A, Szwarcman D, Markovich G (2011) Size dependence of chiroptical activity in colloidal quantum dots. ACS Nano 5(11):9034–9043

    Article  CAS  Google Scholar 

  • Biswas A, Shukla A, Maiti P (2019) Biomaterials for interfacing cell imaging and drug delivery: an overview. Langmuir 35(38):12285–12305

    Article  CAS  Google Scholar 

  • Blundell CD, Deangelis PL, Almond A (2006) Hyaluronan: the absence of amide–carboxylate hydrogen bonds and the chain conformation in aqueous solution are incompatible with stable secondary and tertiary structure models. Biochem J 396(3):487–498

    Article  CAS  Google Scholar 

  • Brown B et al (2008) The hidden cost of skin scars: quality of life after skin scarring. J Plast Reconstr Aesthet Surg 61(9):1049–1058

    Article  CAS  Google Scholar 

  • Burke-Smith A, Collier J, Jones I (2015) A comparison of non-invasive imaging modalities: infrared thermography, spectrophotometric intracutaneous analysis and laser Doppler imaging for the assessment of adult burns. Burns 41(8):1695–1707

    Article  Google Scholar 

  • Burmeister DM et al (2015) Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model. Burns 41(6):1242–1252

    Article  Google Scholar 

  • Calin M-A et al (2015a) Hyperspectral imaging-based wound analysis using mixture-tuned matched filtering classification method. J Biomed Opt 20(4):046004

    Article  Google Scholar 

  • Calin MA et al (2015b) Characterization of burns using hyperspectral imaging technique—a preliminary study. Burns 41(1):118–124

    Article  Google Scholar 

  • Chan KA et al (2008) A coordinated approach to cutaneous wound healing: vibrational microscopy and molecular biology. J Cell Mol Med 12(5b):2145–2154

    Article  CAS  Google Scholar 

  • Clark RA (2021) To scar or not to scar. N Engl J Med 385(5):469–471

    Article  Google Scholar 

  • Cobb MJ et al (2006) Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography. J Biomed Opt 11(6)

    Google Scholar 

  • Corr DT, Hart DA (2013) Biomechanics of scar tissue and uninjured skin. Adv Wound Care 2(2):37–43

    Article  Google Scholar 

  • Crane NJ, Elster EA (2012) Vibrational spectroscopy: a tool being developed for the noninvasive monitoring of wound healing. J Biomed Opt 17(1):010902

    Article  Google Scholar 

  • DaCosta RS et al (2015) Point-of-care autofluorescence imaging for real-time sampling and treatment guidance of bioburden in chronic wounds: first-in-human results. PLoS One 10(3):e0116623

    Article  Google Scholar 

  • de Boer JF, Leitgeb R, Wojtkowski M (2017a) Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]. Biomed Opt Express 8(7):3248–3280

    Article  Google Scholar 

  • De Boer JF, Hitzenberger CK, Yasuno Y (2017b) Polarization sensitive optical coherence tomography—a review. Biomed Opt Express 8(3):1838–1873

    Article  Google Scholar 

  • Denstedt M, et al (2013) Hyperspectral imaging as a diagnostic tool for chronic skin ulcers. in Photonic Therapeutics and Diagnostics IX. International Society for Optics and Photonics

    Google Scholar 

  • Droog E, Steenbergen W, Sjöberg F (2001) Measurement of depth of burns by laser Doppler perfusion imaging. Burns 27(6):561–568

    Article  CAS  Google Scholar 

  • Foster F et al (2002) A new ultrasound instrument for in vivo microimaging of mice. Ultrasound Med Biol 28(9):1165–1172

    Article  CAS  Google Scholar 

  • Freitas J et al (1996) Hyaluronic acid in progressive systemic sclerosis. Dermatology 192(1):46–49

    Article  CAS  Google Scholar 

  • Gambichler T, Pljakic A, Schmitz L (2015) Recent advances in clinical application of optical coherence tomography of human skin. Clin Cosmet Investig Dermatol 8:345–353

    Article  Google Scholar 

  • Ghosh B et al (2021a) Attenuation corrected-optical coherence tomography for quantitative assessment of skin wound healing and scar morphology. J Biophotonics 14(4):e202000357

    Article  CAS  Google Scholar 

  • Ghosh B et al (2021b) Structural mechanics modeling reveals stress-adaptive features of cutaneous scars. Biomech Model Mechanobiol 20(1):371–377

    Article  Google Scholar 

  • Gnyawali SC et al (2015) High-resolution harmonics ultrasound imaging for non-invasive characterization of wound healing in a pre-clinical swine model. PLoS One 10(3):e0122327

    Article  Google Scholar 

  • Gnyawali SC et al (2020) High resolution ultrasound imaging for repeated measure of wound tissue morphometry, biomechanics and hemodynamics under fetal, adult and diabetic conditions. PLoS One 15(11):e0241831

    Article  CAS  Google Scholar 

  • Golberg A et al (2015) Skin rejuvenation with non-invasive pulsed electric fields. Sci Rep 5(1):1–18

    Article  Google Scholar 

  • Golberg A et al (2016) Preventing scars after injury with partial irreversible electroporation. J Investig Dermatol 136(11):2297–2304

    Article  CAS  Google Scholar 

  • Gong P et al (2013) Assessment of human burn scars with optical coherence tomography by imaging the attenuation coefficient of tissue after vascular masking. J Biomed Opt 19(2):021111

    Article  Google Scholar 

  • Gong PJ et al (2014) Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking. J Biomed Opt 19(12)

    Google Scholar 

  • Greaves NS et al (2014) Optical coherence tomography: a reliable alternative to invasive histological assessment of acute wound healing in human skin? Br J Dermatol 170(4):840–850

    Article  CAS  Google Scholar 

  • Greaves NS et al (2015) Skin substitute-assisted repair shows reduced dermal fibrosis in acute human wounds validated simultaneously by histology and optical coherence tomography. Wound Repair Regen 23(4):483–494

    Article  Google Scholar 

  • Gurtner GC et al (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  Google Scholar 

  • Hariri A et al (2019) Noninvasive staging of pressure ulcers using photoacoustic imaging. Wound Repair Regen 27(5):488–496

    Article  Google Scholar 

  • Hoeksema H et al (2009) Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Burns 35(1):36–45

    Article  Google Scholar 

  • Holland A, Martin H, Cass D (2002) Laser Doppler imaging prediction of burn wound outcome in children. Burns 28(1):11–17

    Article  CAS  Google Scholar 

  • Huang X et al (2012) Matrix stiffness–induced myofibroblast differentiation is mediated by intrinsic mechanotransduction. Am J Respir Cell Mol Biol 47(3):340–348

    Article  CAS  Google Scholar 

  • Huang C et al (2013) Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends Mol Med 19(9):555–564

    Article  Google Scholar 

  • Jayachandran M et al (2016) Critical review of noninvasive optical technologies for wound imaging. Adv Wound Care 5(8):349–359

    Article  Google Scholar 

  • Jeng J et al (2003) Laser Doppler imaging determines need for excision and grafting in advance of clinical judgment: a prospective blinded trial. Burns 29(7):665–670

    Article  CAS  Google Scholar 

  • Jiang D et al (2020) Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin. Nat Commun 11(1):1–13

    Article  Google Scholar 

  • Khaodhiar L et al (2007) The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes. Diabetes Care 30(4):903–910

    Article  Google Scholar 

  • Khetan S et al (2013) Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater 12(5):458–465

    Article  CAS  Google Scholar 

  • Kim M-H et al (2008) Dynamics of neutrophil infiltration during cutaneous wound healing and infection using fluorescence imaging. J Investig Dermatol 128(7):1812–1820

    Article  CAS  Google Scholar 

  • Kim KH et al (2012) In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography. J Biomed Opt 17(6)

    Google Scholar 

  • Kingwell BA et al (2003) Type 2 diabetic individuals have impaired leg blood flow responses to exercise: role of endothelium-dependent vasodilation. Diabetes Care 26(3):899–904

    Article  Google Scholar 

  • Kislevitz M et al (2020) Use of optical coherence tomography (OCT) in aesthetic skin assessment—a short review. Lasers Surg Med 52(8):699–704

    Article  Google Scholar 

  • Kloppenberg F, Beerthuizen G, Ten Duis H (2001) Perfusion of burn wounds assessed by laser Doppler imaging is related to burn depth and healing time. Burns 27(4):359–363

    Article  CAS  Google Scholar 

  • Krafft C et al (2007) Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains. Anal Bioanal Chem 389(4):1133–1142

    Article  CAS  Google Scholar 

  • Krafft C et al (2008) Raman and FTIR microscopic imaging of colon tissue: a comparative study. J Biophotonics 1(2):154–169

    Article  CAS  Google Scholar 

  • Kubli S et al (2000) Reproducibility of laser Doppler imaging of skin blood flow as a tool to assess endothelial function. J Cardiovasc Pharmacol 36(5):640–648

    Article  CAS  Google Scholar 

  • Lau Y-KI, Gobin AM, West JL (2006) Overexpression of lysyl oxidase to increase matrix crosslinking and improve tissue strength in dermal wound healing. Ann Biomed Eng 34(8):1239–1246

    Article  Google Scholar 

  • Leitgeb RA et al (2014) Doppler optical coherence tomography. Prog Retin Eye Res 41:26–43

    Article  Google Scholar 

  • Leutenegger M et al (2011) Real-time full field laser Doppler imaging. Biomed Opt Express 2(6):1470–1477

    Article  Google Scholar 

  • Li Q, Sampson DD, Villiger M (2020) In vivo imaging of the depth-resolved optic axis of birefringence in human skin. Opt Lett 45(17):4919–4922

    Article  Google Scholar 

  • Liddington M, Shakespeare P (1996) Timing of the thermographic assessment of burns. Burns 22(1):26–28

    Article  CAS  Google Scholar 

  • Lin AJ et al (2013) Visible spatial frequency domain imaging with a digital light microprojector. J Biomed Opt 18(9):096007

    Article  Google Scholar 

  • Liu CH et al (2019) Translational optical coherence elastography for assessment of systemic sclerosis. J Biophotonics 12(12):e201900236

    Article  Google Scholar 

  • Lo ZJ et al (2020) Clinical and economic burden of wound care in the tropics: a 5-year institutional population health review. Int Wound J 17(3):790–803

    Article  Google Scholar 

  • López-Moral M et al (2021) A comparison of hyperspectral imaging with routine vascular noninvasive techniques to assess the healing prognosis in patients with diabetic foot ulcers. J Vasc Surg

    Google Scholar 

  • Mantri Y et al (2021) Photoacoustic monitoring of angiogenesis predicts response to therapy in healing wounds. Wound Repair Regen

    Google Scholar 

  • Mazhar A et al (2014) Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging. J Biomed Opt 19(8):086019

    Article  Google Scholar 

  • Medina-Preciado JD et al (2012) Noninvasive determination of burn depth in children by digital infrared thermal imaging. J Biomed Opt 18(6):061204

    Article  Google Scholar 

  • Monshipouri M et al (2021) Thermal imaging potential and limitations to predict healing of venous leg ulcers. Sci Rep 11(1):1–11

    Article  Google Scholar 

  • Moore AL et al (2018) Scarless wound healing: transitioning from fetal research to regenerative healing. Wiley Interdiscip Rev Dev Biol 7(2):e309

    Article  Google Scholar 

  • Murray AK, Herrick A, King T (2004) Laser Doppler imaging: a developing technique for application in the rheumatic diseases. Rheumatology 43(10):1210–1218

    Article  CAS  Google Scholar 

  • Nguyen JQM et al (2013a) Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity. J Biomed Opt 18(6):066010

    Article  Google Scholar 

  • Nguyen TT et al (2013b) Novel application of a spatial frequency domain imaging system to determine signature spectral differences between infected and noninfected burn wounds. J Burn Care Res 34(1):44–50

    Article  Google Scholar 

  • Nussbaum SR et al (2018) An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health 21(1):27–32

    Article  Google Scholar 

  • Ogawa R (2017) Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int J Mol Sci 18(3)

    Google Scholar 

  • Oh J-T et al (2006) Quantification of the wound healing using polarization-sensitive optical coherence tomography. J Biomed Opt 11(4):041124

    Article  Google Scholar 

  • Olsen J, Holmes J, Jemec GB (2018) Advances in optical coherence tomography in dermatology—a review. J Biomed Opt 23(4):040901

    Article  Google Scholar 

  • Papazoglou ES et al (2006a) Optical properties of wounds: diabetic versus healthy tissue. IEEE Trans Biomed Eng 53(6):1047–1055

    Article  Google Scholar 

  • Papazoglou ES, et al (2006b) Monitoring diabetic wound healing by NIR spectroscopy. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE

    Google Scholar 

  • Papazoglou ES et al (2007) Near infrared diffuse optical tomography: improving the quality of care in chronic wounds of patients with diabetes. Biomed Instrum Technol 41(1):83–87

    Article  Google Scholar 

  • Papazoglou ES, et al (2008) Assessment of diabetic foot ulcers with diffuse near infrared methodology. In: 2008 8th IEEE International Conference on BioInformatics and BioEngineering. IEEE

    Google Scholar 

  • Papazoglou ES et al (2009) Noninvasive assessment of diabetic foot ulcers with diffuse photon density wave methodology: pilot human study. J Biomed Opt 14(6):064032

    Article  Google Scholar 

  • Pape SA, Skouras CA, Byrne PO (2001) An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth. Burns 27(3):233–239

    Article  CAS  Google Scholar 

  • Park BH et al (2001) In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J Biomed Opt 6(4):474–479

    Article  CAS  Google Scholar 

  • Park KS et al (2018) Multifunctional in vivo imaging for monitoring wound healing using swept-source polarization-sensitive optical coherence tomography. Lasers Surg Med 50(3):213–221

    Article  Google Scholar 

  • Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8(2):147–166

    Article  CAS  Google Scholar 

  • Pierce MC et al (2004a) Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. Burns 30(6):511–517

    Article  Google Scholar 

  • Pierce MC et al (2004b) Advances in optical coherence tomography imaging for dermatology. J Investig Dermatol 123(3):458–463

    Article  CAS  Google Scholar 

  • Pierce MC et al (2004c) Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J Biomed Opt 9(2):287–291

    Article  Google Scholar 

  • Ponticorvo A et al (2014) Quantitative assessment of graded burn wounds in a porcine model using spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI). Biomed Opt Express 5(10):3467–3481

    Article  Google Scholar 

  • Ramella-Roman J et al (2015) Monitoring hypertrophic burn scars with a spectroscopic polarimetric optical system. SPIE Newsroom:1–3

    Google Scholar 

  • Rennie M et al (2017) Point-of-care fluorescence imaging predicts the presence of pathogenic bacteria in wounds: a clinical study. J Wound Care 26(8):452–460

    Article  CAS  Google Scholar 

  • Sadhanala HK, Nanda KK (2016) Boron-doped carbon nanoparticles: size-independent color tunability from red to blue and bioimaging applications. Carbon 96:166–173

    Article  CAS  Google Scholar 

  • Sakai S et al (2011) In vivo evaluation of human skin anisotropy by polarization-sensitive optical coherence tomography. Biomed Opt Express 2(9):2623–2631

    Article  Google Scholar 

  • Shah M, Foreman DM, Ferguson MW (1992) Control of scarring in adult wounds by neutralising antibody to transforming growth factor β. Lancet 339(8787):213–214

    Article  CAS  Google Scholar 

  • Sen CK (2021) Human wound and its burden: updated 2020 compendium of estimates. Mary Ann Liebert, Inc., New York, pp 281–292

    Google Scholar 

  • Sidgwick G, McGeorge D, Bayat A (2015) A comprehensive evidence-based review on the role of topicals and dressings in the management of skin scarring. Arch Dermatol Res 307(6):461–477

    Article  CAS  Google Scholar 

  • Sen CK et al (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771

    Article  Google Scholar 

  • Yang C et al (2014) Mechanical memory and dosing influence stem cell fate. Nat Mater 13(6):645–652

    Article  CAS  Google Scholar 

  • Weingarten MS et al (2010) Prediction of wound healing in human diabetic foot ulcers by diffuse near-infrared spectroscopy: a pilot study. Wound Repair Regen 18(2):180–185

    Article  Google Scholar 

  • Stewart C et al (2005) A comparison of two laser-based methods for determination of burn scar perfusion: laser Doppler versus laser speckle imaging. Burns 31(6):744–752

    Article  CAS  Google Scholar 

  • Wu YC et al (2016) Handheld fluorescence imaging device detects subclinical wound infection in an asymptomatic patient with chronic diabetic foot ulcer: a case report. Int Wound J 13(4):449–453

    Article  Google Scholar 

  • Schwartz M, Levine A, Markowitz O (2017) Optical coherence tomography in dermatology. Cutis 100(3):163–166

    Google Scholar 

  • Sattler E, Kastle R, Welzel J (2013a) Optical coherence tomography in dermatology. J Biomed Opt 18(6)

    Google Scholar 

  • Srinivas SM et al (2004) Determination of burn depth by polarization-sensitive optical coherence tomography. J Biomed Opt 9(1):207–212

    Article  Google Scholar 

  • Singer AJ et al (2007) Optical coherence tomography: a noninvasive method to assess wound reepithelialization. Acad Emerg Med 14(5):387–391

    Article  Google Scholar 

  • Sattler ECE et al (2013b) Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy. J Am Acad Dermatol 69(4):E165–E173

    Article  Google Scholar 

  • Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4(11):710–711

    Article  CAS  Google Scholar 

  • Yeong EK et al (1996) Improved accuracy of burn wound assessment using laser Doppler. J Trauma Acute Care Surg 40(6):956–962

    Article  CAS  Google Scholar 

  • Wang R et al (2020) Diagnostic accuracy of laser Doppler imaging for the assessment of burn depth: a meta-analysis and systematic review. J Burn Care Res 41(3):619–625

    Article  Google Scholar 

  • Yudovsky D, Nouvong A, Pilon L (2010) Hyperspectral imaging in diabetic foot wound care. J Diabetes Sci Technol 4(5):1099–1113

    Article  Google Scholar 

  • Squiers JJ et al (2021) Machine learning analysis of multispectral imaging and clinical risk factors to predict amputation wound healing. J Vasc Surg

    Google Scholar 

  • Weingarten MS et al (2006) Measurement of optical properties to quantify healing of chronic diabetic wounds. Wound Repair Regen 14(3):364–370

    Article  Google Scholar 

  • Weingarten MS et al (2012) Diffuse near-infrared spectroscopy prediction of healing in diabetic foot ulcers: a human study and cost analysis. Wound Repair Regen 20(6):911–917

    Article  Google Scholar 

  • Sato S et al (2005) Photoacoustic diagnosis of burns in rats. J Trauma Acute Care Surg 59(6):1450–1456

    Article  Google Scholar 

  • Yamazaki M et al (2005) Measurement of burn depths in rats using multiwavelength photoacoustic depth profiling. J Biomed Opt 10(6):064011

    Article  Google Scholar 

  • Yamazaki M et al (2006) Photoacoustic monitoring of neovascularities in grafted skin. Lasers Surg Med 38(3):235–239

    Article  Google Scholar 

  • Wang Y et al (2019) A portable three-dimensional photoacoustic tomography system for imaging of chronic foot ulcers. Quant Imaging Med Surg 9(5):799

    Article  Google Scholar 

  • Wearn C et al (2018) Prospective comparative evaluation study of Laser Doppler Imaging and thermal imaging in the assessment of burn depth. Burns 44(1):124–133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajoy Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, B., Chatterjee, J. (2023). Advances in Medical Imaging for Wound Repair and Regenerative Medicine. In: Chakravorty, N., Shukla, P.C. (eds) Regenerative Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-6008-6_4

Download citation

Publish with us

Policies and ethics