Skip to main content

Non-stem Cell Mediated Tissue Regeneration and Repair

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Regrowth and replacement are two basic responses of the body to any injury. While regrowth is generally attributed to stem cells, and replacement or scarring to non-stem cells, there is much more to the repair process than that. Contrary to popular belief, non-stem cells have many more roles to play in the tissue repair and regeneration than just the scar formation. Moreover, there are several other pathways to tissue regrowth and functional regeneration than with the stem cells. Several natural healing processes result in functional regrowth using non-stem cells such as olfactory ensheathing cells, Schwann cells, osteoblasts, and chondroblasts. Additionally, numerous other approaches, clinically available and under exploration, also make use of non-stem cells. This chapter explores the benefits and drawbacks of using non-stem cells, and delves into the approaches employing them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas AK, Aster JC (2015) Robbins and Cotran pathologic basis of disease. Saunders

    Google Scholar 

  • Ahangar P, Cooke ME, Weber MH, Rosenzweig DH (2019) Current biomedical applications of 3D printing and additive manufacturing. Appl Sci 9:1713

    Article  CAS  Google Scholar 

  • Anderson KD, Guest JD, Dietrich WD, Bartlett Bunge M, Curiel R, Dididze M, Green BA, Khan A, Pearse DD, Saraf-Lavi E, Widerström-Noga E, Wood P, Levi AD (2017) Safety of autologous human schwann cell transplantation in subacute thoracic spinal cord injury. J Neurotrauma 34:2950–2963

    Article  Google Scholar 

  • Anonymous (2021) Regenerative medicine. Nature Portfolio: Nature. https://www.nature.com/subjects/regenerative-medicine. Accessed Oct 2021

  • Asahara T, Murohara T, Sullivan A, Silver M, Van Der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–966

    Article  CAS  Google Scholar 

  • Atala A (2006) Recent applications of regenerative medicine to urologic structures and related tissues. Curr Opin Urol 16:305–309

    Article  Google Scholar 

  • Atala A, Irvine DJ, Moses M, Shaunak S (2010) Wound healing versus regeneration: role of the tissue environment in regenerative medicine. MRS Bull 35

    Google Scholar 

  • Avraham O, Deng PY, Jones S, Kuruvilla R, Semenkovich CF, Klyachko VA, Cavalli V (2020) Satellite glial cells promote regenerative growth in sensory neurons. Nat Commun 11:4891

    Article  CAS  Google Scholar 

  • Awong G, Zuniga-Pflucker JC (2011) Thymus-bound: the many features of T cell progenitors. Front Biosci 3:961–969

    Article  Google Scholar 

  • Bachelin C, Lachapelle F, Girard C, Moissonnier P, Serguera-Lagache C, Mallet J, Fontaine D, Chojnowski A, Le Guern E, Nait-Oumesmar B (2005) Efficient myelin repair in the macaque spinal cord by autologous grafts of Schwann cells. Brain 128:540–549

    Article  Google Scholar 

  • Badhiwala JH, Ahuja CS, Fehlings MG (2018) Time is spine: a review of translational advances in spinal cord injury. J Neurosurg Spine 30:1–18

    Article  Google Scholar 

  • Barber CL, Iruela-Arispe ML (2006) The ever-elusive endothelial progenitor cell: identities, functions and clinical implications. Pediatr Res 59:26–32

    Article  Google Scholar 

  • Barber PC, Lindsay RM (1982) Schwann cells of the olfactory nerves contain glial fibrillary acidic protein and resemble astrocytes. Neuroscience 7:3077–3090

    Article  CAS  Google Scholar 

  • Barnett SC, Riddell JS (2004) Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats. J Anat 204:57–67

    Article  Google Scholar 

  • Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M (2014) Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen 22:569–578

    Article  Google Scholar 

  • Bartolomei JC, Greer CA (2000) Olfactory ensheathing cells: bridging the gap in spinal cord injury. Neurosurgery 47:1057–1069

    Article  CAS  Google Scholar 

  • Barton MJ, John JS, Clarke M, Wright A, Ekberg J (2017) The glia response after peripheral nerve injury: a comparison between schwann cells and olfactory ensheathing cells and their uses for neural regenerative therapies. Int J Mol Sci 18:287

    Article  Google Scholar 

  • Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253

    Article  CAS  Google Scholar 

  • Bettinger CJ, Bruggeman JP, Misra A, Borenstein JT, Langer R (2009) Biocompatibility of biodegradable semiconducting melanin films for nerve tissue engineering. Biomaterials 30:3050–3057

    Article  CAS  Google Scholar 

  • Bhatheja K, Field J (2006) Schwann cells: origins and role in axonal maintenance and regeneration. Int J Biochem Cell Biol 38:1995–1999

    Article  CAS  Google Scholar 

  • Bianconi V, Sahebkar A, Kovanen P, Bagaglia F, Ricciuti B, Calabrò P, Patti G, Pirro M (2018) Endothelial and cardiac progenitor cells for cardiovascular repair: a controversial paradigm in cell therapy. Pharmacol Ther 181:156–168

    Article  CAS  Google Scholar 

  • Biehl JK, Russell B (2009) Introduction to stem cell therapy. J Cardiovasc Nurs 24:98–103; quiz 104–5

    Article  Google Scholar 

  • Bischoff R (1994) The satellite cell and muscle regeneration. Myology

    Google Scholar 

  • Blanes T (1898) Sobre algunos puntos dudosos de la estructura del bulbo olfatorio

    Google Scholar 

  • Boerboom A, Dion V, Chariot A, Franzen R (2017) Molecular mechanisms involved in Schwann cell plasticity. Front Mol Neurosci 10:38

    Article  Google Scholar 

  • Büttner R, Schulz A, Reuter M, Akula AK, Mindos T, Carlstedt A, Riecken LB, Baader SL, Bauer R, Morrison H (2018) Inflammaging impairs peripheral nerve maintenance and regeneration. Aging Cell 17:e12833

    Article  Google Scholar 

  • Cao W, Helder MN, Bravenboer N, Wu G, Jin J, Ten Bruggenkate CM, Klein-Nulend J, Schulten E (2020) Is there a governing role of osteocytes in bone tissue regeneration? Curr Osteoporos Rep 18:541–550

    Article  Google Scholar 

  • Carotta S (2008) Losing B cell identity. BioEssays 30:203–207

    Article  Google Scholar 

  • Carr MJ, Johnston AP (2017) Schwann cells as drivers of tissue repair and regeneration. Curr Opin Neurobiol 47:52–57

    Article  CAS  Google Scholar 

  • Carroll L, Mridha AR, Tuch BE (2019) Encapsulation and transplantation of pancreatic progenitor cells. Methods Mol Biol 2029:93–102

    Article  CAS  Google Scholar 

  • Chen L, Huang H, Xi H, Zhang F, Liu Y, Chen D, Xiao J (2014) A prospective randomized double-blind clinical trial using a combination of olfactory ensheathing cells and Schwann cells for the treatment of chronic complete spinal cord injuries. Cell Transplant 23(Suppl 1):S35–S44

    Article  Google Scholar 

  • Cheng L, Wang C, Feng L, Yang K, Liu Z (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114:10869–10939

    Article  CAS  Google Scholar 

  • Cloutier F, Kalincik T, Lauschke J, Tuxworth G, Cavanagh B, Meedeniya A, Mackay-Sim A, Carrive P, Waite P (2016) Olfactory ensheathing cells but not fibroblasts reduce the duration of autonomic dysreflexia in spinal cord injured rats. Auton Neurosci 201:17–23

    Article  Google Scholar 

  • Coleman MP, Freeman MR (2010) Wallerian degeneration, wlds, and nmnat. Annu Rev Neurosci 33:245–267

    Article  CAS  Google Scholar 

  • De Bari C, Dell’accio F, Vanlauwe J, Eyckmans J, Khan IM, Archer CW, Jones EA, Mcgonagle D, Mitsiadis TA, Pitzalis C (2006) Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 54:1209–1221

    Article  Google Scholar 

  • De Ruijter M, Ribeiro A, Dokter I, Castilho M, Malda J (2019) Simultaneous micropatterning of fibrous meshes and bioinks for the fabrication of living tissue constructs. Adv Healthc Mater 8:1800418

    Article  Google Scholar 

  • Deumens R, Van Gorp SF, Bozkurt A, Beckmann C, Fuhrmann T, Montzka K, Tolba R, Kobayashi E, Heschel I, Weis J, Brook GA (2013) Motor outcome and allodynia are largely unaffected by novel olfactory ensheathing cell grafts to repair low-thoracic lesion gaps in the adult rat spinal cord. Behav Brain Res 237:185–189

    Article  CAS  Google Scholar 

  • Donato MT, Lahoz A, Montero S, Bonora A, Pareja E, Mir J, Castell JV, Gomez-Lechon MJ (2008) Functional assessment of the quality of human hepatocyte preparations for cell transplantation. Cell Transplant 17:1211–1219

    Article  Google Scholar 

  • Dong C, Goldschmidt-Clermont PJ (2007) Endothelial progenitor cells: a promising therapeutic alternative for cardiovascular disease. J Interv Cardiol 20:93–99

    Article  Google Scholar 

  • Doucette R (1989) Development of the nerve fiber layer in the olfactory bulb of mouse embryos. J Comp Neurol 285:514–527

    Article  CAS  Google Scholar 

  • Doucette R (1990) Glial influences on axonal growth in the primary olfactory system. Glia 3:433–449

    Article  CAS  Google Scholar 

  • Egea-Guerrero JJ, Carmona G, Correa E, Mata R, Arias-Santiago S, Alaminos M, Gacto P, Cuende N (2019) Transplant of tissue-engineered artificial autologous human skin in andalusia: an example of coordination and institutional collaboration. Transplant Proc 51:3047–3050

    Article  Google Scholar 

  • Ekberg JA, Amaya D, Mackay-Sim A, John JAS (2012) The migration of olfactory ensheathing cells during development and regeneration. Neurosignals 20:147–158

    Article  CAS  Google Scholar 

  • Ekberg JA, St John JA (2014) Crucial roles for olfactory ensheathing cells and olfactory mucosal cells in the repair of damaged neural tracts. Anat Rec 297:121–128

    Article  Google Scholar 

  • El-Ghalbzouri A, Gibbs S, Lamme E, Van Blitterswijk CA, Ponec M (2002) Effect of fibroblasts on epidermal regeneration. Br J Dermatol 147:230–243

    Article  CAS  Google Scholar 

  • Ezoe Y, Muto M, Uedo N, Doyama H, Yao K, Oda I, Kaneko K, Kawahara Y, Yokoi C, Sugiura Y, Ishikawa H, Takeuchi Y, Kaneko Y, Saito Y (2011) Magnifying narrowband imaging is more accurate than conventional white-light imaging in diagnosis of gastric mucosal cancer. Gastroenterology 141:2017–2025.e3

    Article  Google Scholar 

  • Féron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, Geraghty T, Mackay-Sim A (2005) Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 128:2951–2960

    Article  Google Scholar 

  • Fry EJ, Ho C, David S (2007) A role for Nogo receptor in macrophage clearance from injured peripheral nerve. Neuron 53:649–662

    Article  CAS  Google Scholar 

  • Fu S, Hu H, Chen J, Zhu Y, Zhao S (2020) Silicone resin derived larnite/C scaffolds via 3D printing for potential tumor therapy and bone regeneration. Chem Eng J 382:122928

    Article  CAS  Google Scholar 

  • Fujihara C, Kanai Y, Masumoto R, Kitagaki J, Matsumoto M, Yamada S, Kajikawa T, Murakami S (2019) Fibroblast growth factor-2 inhibits CD40-mediated periodontal inflammation. J Cell Physiol 234:7149–7160

    Article  CAS  Google Scholar 

  • Gant KL, Guest JD, Palermo AE, Vedantam A, Jimsheleishvili G, Bunge MB, Brooks AE, Anderson KD, Thomas CK, Santamaria AJ, Perez MA, Curiel R, Nash MS, Saraf-Lavi E, Pearse DD, Widerström-Noga E, Khan A, Dietrich WD, Levi AD (2021) Phase 1 safety trial of autologous human schwann cell transplantation in chronic spinal cord injury. J Neurotrauma

    Google Scholar 

  • Golgi C (1875) Sulla fina anatomia del bulbi olfattorii. Ti Rivista Sperimentale di Freniatria 1:405–425

    Google Scholar 

  • Gomes ED, Mendes SS, Assuncao-Silva RC, Teixeira FG, Pires AO, Anjo SI, Manadas B, Leite-Almeida H, Gimble JM, Sousa N, Lepore AC, Silva NA, Salgado AJ (2018) Co-transplantation of adipose tissue-derived stromal cells and olfactory ensheathing cells for spinal cord injury repair. Stem Cells 36:696–708

    Article  CAS  Google Scholar 

  • Gomes ED, Mendes SS, Leite-Almeida H, Gimble JM, Tam RY, Shoichet MS, Sousa N, Silva NA, Salgado AJ (2016) Combination of a peptide-modified gellan gum hydrogel with cell therapy in a lumbar spinal cord injury animal model. Biomaterials 105:38–51

    Article  CAS  Google Scholar 

  • Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M, Palomo-Irigoyen M, Varela-Rey M, Griffith M, Hantke J, Macias-Camara N, Azkargorta M, Aurrekoetxea I (2015) Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 210:153–168

    Article  CAS  Google Scholar 

  • Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B, Tayanloo Beik A, Arjmand B (2018) Tissue engineered skin substitutes. Adv Exp Med Biol 1107:143–188

    Article  CAS  Google Scholar 

  • Granger N, Blamires H, Franklin RJM, Jeffery ND (2012) Autologous olfactory mucosal cell transplants in clinical spinal cord injury: a randomized double-blinded trial in a canine translational model. Brain 135:3227–3237

    Article  Google Scholar 

  • Gratte FD, Pasic S, Olynyk JK, Yeoh GCT, Tosh D, Coombe DR, Tirnitz-Parker JEE (2018) Transdifferentiation of pancreatic progenitor cells to hepatocyte-like cells is not serum-dependent when facilitated by extracellular matrix proteins. Sci Rep 8:4385

    Article  Google Scholar 

  • Graziadei P, Graziadei GM (1980) Neurogenesis and neuron regeneration in the olfactory system of mammals. III. Deafferentation and reinnervation of the olfactory bulb following section of thefila olfactoria in rat. J Neurocytol 9:145–162

    Article  CAS  Google Scholar 

  • Graziadei P, Graziadei GM (1985) Neurogenesis and Plasticity of the Olfactory Sensory Neurons a. Ann N Y Acad Sci 457:127–142

    Article  CAS  Google Scholar 

  • Graziadei PP, Graziadei GA (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol 8:1–18

    Article  CAS  Google Scholar 

  • Halban PA, German MS, Kahn SE, Weir GC (2010) Current status of islet cell replacement and regeneration therapy. J Clin Endocrinol Metab 95:1034–1043

    Article  CAS  Google Scholar 

  • Hamilton GA, Jolley SL, Gilbert D, Coon JD, Barros S, Lecluyse EL (2001) Regulation of cell morphology and cytochrome P450 expression in human hepatocytes by extracellular matrix and cell-cell interactions. Cell Tissue Res 306:85–99

    Article  CAS  Google Scholar 

  • Herberts CA, Kwa MSG, Hermsen HPH (2011) Risk factors in the development of stem cell therapy. J Transl Med 9:29

    Article  Google Scholar 

  • Hespel AM, Wilhite R, Hudson J (2014) Invited review—applications for 3D printers in veterinary medicine. Vet Radiol Ultrasound 55:347–358

    Article  Google Scholar 

  • Higginson JR, Barnett SC (2011) The culture of olfactory ensheathing cells (OECs)—a distinct glial cell type. Exp Neurol 229:2–9

    Article  Google Scholar 

  • Hirayama M, Oshima M, Tsuji T (2013) Development and prospects of organ replacement regenerative therapy. Cornea 32:S13–S21

    Article  Google Scholar 

  • Huang J, Wang K, Shiflett LA, Brotto L, Bonewald LF, Wacker MJ, Dallas SL, Brotto M (2019) Fibroblast growth factor 9 (FGF9) inhibits myogenic differentiation of C2C12 and human muscle cells. Cell Cycle 18:3562–3580

    Article  CAS  Google Scholar 

  • Isomoto H, Yamaguchi N, Minami H, Nakao K (2013) Management of complications associated with endoscopic submucosal dissection/endoscopic mucosal resection for esophageal cancer. Dig Endosc 25(Suppl 1):29–38

    Article  Google Scholar 

  • Jessen K, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594:3521–3531

    Article  CAS  Google Scholar 

  • Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682

    Article  CAS  Google Scholar 

  • Jessen KR, Mirsky R (2019) Schwann cell precursors; multipotent glial cells in embryonic nerves. Front Mol Neurosci 12:69

    Article  CAS  Google Scholar 

  • Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci 97:3422–3427

    Article  CAS  Google Scholar 

  • Kalra K, Tomar PC (2014) Stem cell: basics, classification and applications. Am J Phytomed Clin Therap 2:919–930

    Google Scholar 

  • Kamada T, Koda M, Dezawa M, Yoshinaga K, Hashimoto M, Koshizuka S, Nishio Y, Moriya H, Yamazaki M (2005) Transplantation of bone marrow stromal cell-derived Schwann cells promotes axonal regeneration and functional recovery after complete transection of adult rat spinal cord. J Neuropathol Exp Neurol 64:37–45

    Article  Google Scholar 

  • Kang XW, Hu JL, Wang SK, Wang J (2015) Effectiveness of muscle basal lamina carrying neural stem cells and olfactory ensheathing cells in spinal cord repair. Genet Mol Res 14:13437–13455

    Article  CAS  Google Scholar 

  • Kaushik K, Das A (2019) Endothelial progenitor cell therapy for chronic wound tissue regeneration. Cytotherapy 21:1137–1150

    Article  CAS  Google Scholar 

  • Kawamoto A, Gwon H-C, Iwaguro H, Yamaguchi J-I, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637

    Article  CAS  Google Scholar 

  • Kelly E (2017) FDA regulation of 3D-printed organs and associated ethical challenges. U Pa L Rev 166:515

    Google Scholar 

  • Kocher A, Schuster M, Szabolcs M, Takuma S, Burkhoff D, Wang J, Homma S, Edwards N, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    Article  CAS  Google Scholar 

  • Kohama I, Lankford KL, Preiningerova J, White FA, Vollmer TL, Kocsis JD (2001) Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J Neurosci 21:944–950

    Article  CAS  Google Scholar 

  • Krafts KP (2010) Tissue repair: the hidden drama. Organogenesis 6:225–233

    Article  Google Scholar 

  • Ku HT (2008) Minireview: pancreatic progenitor cells—recent studies. Endocrinology 149:4312–4316

    Article  CAS  Google Scholar 

  • Leung J, Chapman J, Harris J, Hale D, Chung R, West A, Chuah M (2008) Olfactory ensheathing cells are attracted to, and can endocytose, bacteria. Cell Mol Life Sci 65:2732–2739

    Article  CAS  Google Scholar 

  • Li BC, Xu C, Zhang JY, Li Y, Duan ZX (2012) Differing Schwann cells and olfactory ensheathing cells behaviors, from interacting with astrocyte, produce similar improvements in contused rat spinal cord’s motor function. J Mol Neurosci 48:35–44

    Article  Google Scholar 

  • Li HC, Stoicov C, Rogers AB, Houghton J (2006) Stem cells and cancer: evidence for bone marrow stem cells in epithelial cancers. World J Gastroenterol 12:363–371

    Article  Google Scholar 

  • Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev Biol 21:605–631

    Article  CAS  Google Scholar 

  • Li PH (2014) 3D bioprinting technologies: patents, innovation and access. Law Innov Technol 6:282–304

    Article  Google Scholar 

  • Li R, Li D, Wu C, Ye L, Wu Y, Yuan Y, Yang S, Xie L, Mao Y, Jiang T (2020) Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics 10:1649

    Article  CAS  Google Scholar 

  • Liu CY, Yin G, Sun YD, Lin YF, Xie Z, English AW, Li QF, Lin HD (2020) Effect of exosomes from adipose-derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury. CNS Neurosci Ther 26:189–196

    Article  CAS  Google Scholar 

  • Liu X, Cao J, Li H, Li J, Jin Q, Ren K, Ji J (2013) Mussel-inspired polydopamine: a biocompatible and ultrastable coating for nanoparticles in vivo. ACS Nano 7:9384–9395

    Article  CAS  Google Scholar 

  • Llames SG, Del Rio M, Larcher F, García E, García M, José Escamez M, Jorcano JL, Holguín P, Meana A (2004) Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. Transplantation 77:350–355

    Article  Google Scholar 

  • Lo B, Parham L (2009) Ethical issues in stem cell research. Endocr Rev 30:204–213

    Article  Google Scholar 

  • Lutz AB, Chung W-S, Sloan SA, Carson GA, Zhou L, Lovelett E, Posada S, Zuchero JB, Barres BA (2017) Schwann cells use TAM receptor-mediated phagocytosis in addition to autophagy to clear myelin in a mouse model of nerve injury. Proc Natl Acad Sci 114:E8072–E8080

    CAS  Google Scholar 

  • Ma H, Luo J, Sun Z, Xia L, Shi M, Liu M, Chang J, Wu C (2016a) 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration. Biomaterials 111:138–148

    Article  CAS  Google Scholar 

  • Ma KH, Hung HA, Svaren J (2016b) Epigenomic regulation of Schwann cell reprogramming in peripheral nerve injury. J Neurosci 36:9135–9147

    Article  CAS  Google Scholar 

  • Maddaluno L, Urwyler C, Werner S (2017) Fibroblast growth factors: key players in regeneration and tissue repair. Development 144:4047–4060

    Article  CAS  Google Scholar 

  • Martini R, Schachner M, Faissner A (1990) Enhanced expression of the extracellular matrix molecule J1/tenascin in the regenerating adult mouse sciatic nerve. J Neurocytol 19:601–616

    Article  CAS  Google Scholar 

  • Mihara Y, Matsuura K, Sakamoto Y, Okano T, Kokudo N, Shimizu T (2017) Production of pancreatic progenitor cells from human induced pluripotent stem cells using a three-dimensional suspension bioreactor system. J Tissue Eng Regen Med 11:3193–3201

    Article  CAS  Google Scholar 

  • Min Q, Parkinson DB, Dun X-P (2021) Migrating Schwann cells direct axon regeneration within the peripheral nerve bridge. Glia 69:235–254

    Article  Google Scholar 

  • Modrak M, Talukder MAH, Gurgenashvili K, Noble M, Elfar JC (2020) Peripheral nerve injury and myelination: potential therapeutic strategies. J Neurosci Res 98:780–795

    Article  CAS  Google Scholar 

  • Morgan JE, Partridge TA (2003) Muscle satellite cells. Int J Biochem Cell Biol 35:1151–1156

    Article  CAS  Google Scholar 

  • Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A, Kobayashi A, Yamaguchi T, Abe M, Amagasa T, Morita I (2008) A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res 314:430–440

    Article  CAS  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  Google Scholar 

  • Murtaza M, Chacko A, Delbaz A, Reshamwala R, Rayfield A, Mcmonagle B, St John JA, Ekberg JAK (2019) Why are olfactory ensheathing cell tumors so rare? Cancer Cell Int 19:260

    Article  Google Scholar 

  • Nategh M, Firouzi M, Naji-Tehrani M, Zanjan LO, Hassannejad Z, Nabian MH, Zadega SA, Karimi M, Rahimi-Movaghar V (2016) Subarachnoid space transplantation of schwann and/or olfactory ensheathing cells following severe spinal cord injury fails to improve locomotor recovery in rats. Acta Med Iran 54:562–569

    Google Scholar 

  • Nazareth L, Lineburg KE, Chuah MI, Tello Velasquez J, Chehrehasa F, St John JA, Ekberg JA (2015) Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system. J Comp Neurol 523:479–494

    Article  CAS  Google Scholar 

  • Nissen SE, Nicholls SJ, Sipahi I, Libby P, Raichlen JS, Ballantyne CM, Davignon J, Erbel R, Fruchart JC, Tardif JC, Schoenhagen P, Crowe T, Cain V, Wolski K, Goormastic M, Tuzcu EM (2006) Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA 295:1556–1565

    Article  CAS  Google Scholar 

  • Nocera G, Jacob C (2020) Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury. Cell Mol Life Sci 77:3977–3989

    Article  CAS  Google Scholar 

  • Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357

    Article  CAS  Google Scholar 

  • Ohki T, Yamamoto M (2020) Esophageal regenerative therapy using cell sheet technology. Regen Ther 13:8–17

    Article  Google Scholar 

  • Ohki T, Yamato M, Ota M, Takagi R, Murakami D, Kondo M, Sasaki R, Namiki H, Okano T, Yamamoto M (2012) Prevention of esophageal stricture after endoscopic submucosal dissection using tissue-engineered cell sheets. Gastroenterology 143:582–588.e2

    Article  Google Scholar 

  • Ono S, Fujishiro M, Niimi K, Goto O, Kodashima S, Yamamichi N, Omata M (2009) Long-term outcomes of endoscopic submucosal dissection for superficial esophageal squamous cell neoplasms. Gastrointest Endosc 70:860–866

    Article  Google Scholar 

  • Orlando G, Wood KJ, Stratta RJ, Yoo JJ, Atala A, Soker S (2011) Regenerative medicine and organ transplantation: past, present, and future. Transplantation 91:1310–1317

    Article  Google Scholar 

  • Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4:215–266

    Article  CAS  Google Scholar 

  • Park JY, Choi YJ, Shim JH, Park JH, Cho DW (2017) Development of a 3D cell printed structure as an alternative to autologs cartilage for auricular reconstruction. J Biomed Mater Res B Appl Biomater 105:1016–1028

    Article  CAS  Google Scholar 

  • Pellegrini G, De Luca M (2014) Eyes on the prize: limbal stem cells and corneal restoration. Cell Stem Cell 15:121–122

    Article  CAS  Google Scholar 

  • Penna V, Stark GB, Wewetzer K, Radtke C, Lang EM (2012) Comparison of Schwann cells and olfactory ensheathing cells for peripheral nerve gap bridging. Cells Tissues Organs 196:534–542

    Article  Google Scholar 

  • Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020

    Article  CAS  Google Scholar 

  • Qiu Y, Zhang C, Zhang G, Tao J (2018) Endothelial progenitor cells in cardiovascular diseases. AGING Med 1:204–208

    Article  Google Scholar 

  • Quijano JC, Tremblay JR, Rawson J, Ku HT (2019) Isolation and characterization of colony-forming progenitor cells from adult pancreas. Methods Mol Biol 2029:63–80

    Article  CAS  Google Scholar 

  • Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9:702–712

    Article  CAS  Google Scholar 

  • Ramón-Cueto A, Avila J (1998) Olfactory ensheathing glia: properties and function. Brain Res Bull 46:175–187

    Article  Google Scholar 

  • Ramon-Cueto A, Cordero MI, Santos-Benito FF, Avila J (2000) Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25:425–435

    Article  CAS  Google Scholar 

  • Ramon-Cueto A, Nieto-Sampedro M (1994) Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol 127:232–244

    Article  CAS  Google Scholar 

  • Reinke JM, Sorg H (2012) Wound repair and regeneration. Eur Surg Res 49:35–43

    Article  CAS  Google Scholar 

  • Reshamwala R (2020) Novel surgical approaches for transplanting three-dimensional constructs of olfactory ensheathing cells to repair the injured spinal cord. PhD, Griffith University

    Google Scholar 

  • Reshamwala R, Shah M, Belt L, Ekberg JAK, John ST, J. A. (2020a) Reliable cell purification and determination of cell purity: crucial aspects of olfactory ensheathing cell transplantation for spinal cord repair. Neural Regen Res 15:2016–2026

    Article  CAS  Google Scholar 

  • Reshamwala R, Shah M, St John J, Ekberg J (2019) Survival and integration of transplanted olfactory ensheathing cells are crucial for spinal cord injury repair: insights from the last 10 years of animal model studies. Cell Transplant 28:132S–159S

    Article  Google Scholar 

  • Reshamwala R, Shah M, St John J, Ekberg J (2020b) The link between olfactory ensheathing cell survival and spinal cord injury repair: a commentary on common limitations of contemporary research. Neural Regen Res 15:1848–1849

    Article  Google Scholar 

  • Riethmacher D, Sonnenberg-Riethmacher E, Brinkmann V, Yamaai T, Lewin GR, Birchmeier C (1997) Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389:725–730

    Article  CAS  Google Scholar 

  • Ringe J, Leinhase I, Stich S, Loch A, Neumann K, Haisch A, Häup T, Manz R, Kaps C, Sittinger M (2008) Human mastoid periosteum-derived stem cells: promising candidates for skeletal tissue engineering. J Tissue Eng Regen Med 2:136–146

    Article  CAS  Google Scholar 

  • Robling AG, Bonewald LF (2020) The osteocyte: new insights. Annu Rev Physiol 82:485–506

    Article  CAS  Google Scholar 

  • Roet KC, Verhaagen J (2014) Understanding the neural repair-promoting properties of olfactory ensheathing cells. Exp Neurol 261:594–609

    Article  CAS  Google Scholar 

  • Rohban R, Pieber TR (2017) Mesenchymal stem and progenitor cells in regeneration: tissue specificity and regenerative potential. Stem Cells Int 2017:5173732

    Article  Google Scholar 

  • Romanazzo S, Vedicherla S, Moran C, Kelly D (2018) Meniscus ECM-functionalised hydrogels containing infrapatellar fat pad-derived stem cells for bioprinting of regionally defined meniscal tissue. J Tissue Eng Regen Med 12:e1826–e1835

    Article  CAS  Google Scholar 

  • Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529

    Article  Google Scholar 

  • Sandhu K, Mamas M, Butler R (2017) Endothelial progenitor cells: exploring the pleiotropic effects of statins. World J Cardiol 9:1–13

    Article  Google Scholar 

  • Sato H, Inoue H, Kobayashi Y, Maselli R, Santi EG, Hayee B, Igarashi K, Yoshida A, Ikeda H, Onimaru M, Aoyagi Y, Kudo SE (2013) Control of severe strictures after circumferential endoscopic submucosal dissection for esophageal carcinoma: oral steroid therapy with balloon dilation or balloon dilation alone. Gastrointest Endosc 78:250–257

    Article  Google Scholar 

  • Schofield R (1983) The stem cell system. Biomed Pharmacother 37:375–380

    CAS  Google Scholar 

  • Seaberg RM, van der Kooy D (2003) Stem and progenitor cells: the premature desertion of rigorous definitions. Trends Neurosci 26:125–131

    Article  CAS  Google Scholar 

  • Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D (2013) Catechol-based biomimetic functional materials. Adv Mater 25:653–701

    Article  Google Scholar 

  • Simkin J, Seifert AW (2018) Concise review: translating regenerative biology into clinically relevant therapies: are we on the right path? Stem Cells Transl Med 7:220–231

    Article  Google Scholar 

  • Stich S, Loch A, Leinhase I, Neumann K, Kaps C, Sittinger M, Ringe J (2008) Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13. Eur J Cell Biol 87:365–376

    Article  CAS  Google Scholar 

  • Stratton JA, Holmes A, Rosin NL, Sinha S, Vohra M, Burma NE, Trang T, Midha R, Biernaskie J (2018) Macrophages regulate Schwann cell maturation after nerve injury. Cell Rep 24(2561–2572):e6

    Google Scholar 

  • Su Z, Chen J, Qiu Y, Yuan Y, Zhu F, Zhu Y, Liu X, Pu Y, He C (2013) Olfactory ensheathing cells: the primary innate immunocytes in the olfactory pathway to engulf apoptotic olfactory nerve debris. Glia 61:490–503

    Article  Google Scholar 

  • Sullivan R, Dailey T, Duncan K, Abel N, Borlongan CV (2016) Peripheral nerve injury: stem cell therapy and peripheral nerve transfer. Int J Mol Sci 17

    Google Scholar 

  • Sun T, Ye C, Zhang Z, Wu J, Huang H (2013) Cotransplantation of olfactory ensheathing cells and Schwann cells combined with treadmill training promotes functional recovery in rats with contused spinal cords. Cell Transplant 22(Suppl 1):S27–S38

    Article  Google Scholar 

  • Tabakow P, Raisman G, Fortuna W, Czyz M, Huber J, Li D, Szewczyk P, Okurowski S, Miedzybrodzki R, Czapiga B, Salomon B, Halon A, Li Y, Lipiec J, Kulczyk A, Jarmundowicz W (2014) Functional regeneration of supraspinal connections in a patient with transected spinal cord following transplantation of bulbar olfactory ensheathing cells with peripheral nerve bridging. Cell Transplant 23:1631–1655

    Article  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  Google Scholar 

  • Tanner Y, Grose RP (2016) Dysregulated FGF signalling in neoplastic disorders. Seminars in cell & developmental biology. Elsevier, pp 126–135

    Google Scholar 

  • Tasnim N, de la Vega L, Anil Kumar S, Abelseth L, Alonzo M, Amereh M, Joddar B, Willerth SM (2018) 3D bioprinting stem cell derived tissues. Cell Mol Bioeng 11:219–240

    Article  CAS  Google Scholar 

  • Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128

    Article  CAS  Google Scholar 

  • Tsourdi E, Jähn K, Rauner M, Busse B, Bonewald LF (2018) Physiological and pathological osteocytic osteolysis. J Musculoskelet Neuronal Interact 18:292–303

    CAS  Google Scholar 

  • Vaquié A, Sauvain A, Duman M, Nocera G, Egger B, Meyenhofer F, Falquet L, Bartesaghi L, Chrast R, Lamy CM (2019) Injured axons instruct Schwann cells to build constricting actin spheres to accelerate axonal disintegration. Cell Rep 27(3152–3166):e7

    Google Scholar 

  • Wang B, Zhao Y, Lin H, Chen B, Zhang J, Zhang J, Wang X, Zhao W, Dai J (2006) Phenotypical analysis of adult rat olfactory ensheathing cells on 3-D collagen scaffolds. Neurosci Lett 401:65–70

    Article  CAS  Google Scholar 

  • Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R (2016) Biomineralization-inspired synthesis of copper sulfide–ferritin nanocages as cancer theranostics. ACS Nano 10:3453–3460

    Article  CAS  Google Scholar 

  • Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, Kooy DER, D. V. (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19:387–393

    Article  CAS  Google Scholar 

  • Werbowetski-Ogilvie TE, Bossé M, Stewart M, Schnerch A, Ramos-Mejia V, Rouleau A, Wynder T, Smith MJ, Dingwall S, Carter T, Williams C, Harris C, Dolling J, Wynder C, Boreham D, Bhatia M (2009) Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27:91–97

    Article  CAS  Google Scholar 

  • Wewetzer K, Kern N, Ebel C, Radtke C, Brandes G (2005) Phagocytosis of O4+ axonal fragments in vitro by p75− neonatal rat olfactory ensheathing cells. Glia 49:577–587

    Article  Google Scholar 

  • Xia D, Jin D, Wang Q, Gao M, Zhang J, Zhang H, Bai J, Feng B, Chen M, Huang Y (2019) Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair in a goat model. J Tissue Eng Regen Med 13:694–703

    Article  CAS  Google Scholar 

  • Xu JY, Lee YK, Wang Y, Tse HF (2014) Therapeutic application of endothelial progenitor cells for treatment of cardiovascular diseases. Curr Stem Cell Res Ther 9:401–414

    Article  CAS  Google Scholar 

  • Yang Y, Liu J, Liang C, Feng L, Fu T, Dong Z, Chao Y, Li Y, Lu G, Chen M (2016) Nanoscale metal–organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano 10:2774–2781

    Article  CAS  Google Scholar 

  • You H, Wei L, Liu Y, Oudega M, Jiao SS, Feng SN, Chen Y, Chen JM, Li BC (2011) Olfactory ensheathing cells enhance Schwann cell-mediated anatomical and functional repair after sciatic nerve injury in adult rats. Exp Neurol 229:158–167

    Article  Google Scholar 

  • Zakrzewski W, Dobrzynski M, Szymonowicz M, Rybak Z (2019) Stem cells: past, present, and future. Stem Cell Res Ther 10:68

    Article  CAS  Google Scholar 

  • Zhang J, Chen H, Duan Z, Chen K, Liu Z, Zhang L, Yao D, Li B (2017) The effects of co-transplantation of olfactory ensheathing cells and schwann cells on local inflammation environment in the contused spinal cord of rats. Mol Neurobiol 54:943–953

    Article  CAS  Google Scholar 

  • Zhang N, Fang M, Chen H, Gou F, Ding M (2014) Evaluation of spinal cord injury animal models. Neural Regen Res 9:2008

    Article  Google Scholar 

  • Zhao Y, Wang J, Yan X, Li D, Xu J (2008) Preliminary survival studies on autologous cultured skin fibroblasts transplantation by injection. Cell Transplant 17:775–783

    Article  Google Scholar 

  • Zigmond RE, Echevarria FD (2019) Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol 173:102–121

    Article  CAS  Google Scholar 

  • Zou C, Lu Y, Teng X, Wang S, Sun X, Huang F, Shu G, Huang X, Guo H, Chen Z, Zhang J, Zhang YA (2017) MRI tracking of autologous pancreatic progenitor-derived insulin-producing cells in monkeys. Sci Rep 7:2505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronak Reshamwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reshamwala, R., Oieni, F., Shah, M. (2023). Non-stem Cell Mediated Tissue Regeneration and Repair. In: Chakravorty, N., Shukla, P.C. (eds) Regenerative Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-6008-6_2

Download citation

Publish with us

Policies and ethics