Skip to main content

In-Vitro and In-Vivo Tracking of Cell-Biomaterial Interaction to Monitor the Process of Bone Regeneration

  • Chapter
  • First Online:
Regenerative Medicine

Abstract

Extensive effort in the development of implants or scaffolds with an objective of bone tissue engineering followed the trend in blending suitable chemical and biological properties. Till date, the application of biomaterials has been explored a lot in this regard including biodegradable and non-biodegradable polymers, bioactive ceramics, biocompatible porous and non-porous metallic structures. Ideal biomaterials have an important role in successful artificial-to-biological transformation while providing the necessary support to the osteoblasts, osteoprogenitors to attach, proliferate and differentiate. Many experimental evidences although showed lack of translational ability in in-vivo environment even after getting reproducible outcome in-vitro as the cells, as being isolated from the natural environment does not truly represent the entire physiology. This review thereby summarized in-vitro as well as in-vivo modalities to evaluate the progress of bone-biomaterial interaction started from activation of immune system in exposure to the implanted foreign body to visualization of quality and quantity of tissue in-growth through nuclear imaging techniques. The suitability of in-silico elucidation of correlation of biomechanical properties of load-bearing implants with current status of peri-prosthetic fractures especially in elderly patients also has been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam S, Ueki K, Marukawa K, Ohara T, Hase T, Takazakura D et al (2007) Expression of bone morphogenetic protein 2 and fibroblast growth factor 2 during bone regeneration using different implant materials as an onlay bone graft in rabbit mandibles. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:16–26

    Article  Google Scholar 

  • Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10:S96–S101

    Article  Google Scholar 

  • Al-Maawi S, Orlowska A, Sader R, James Kirkpatrick C, Ghanaati S (2017) In vivo cellular reactions to different biomaterials—physiological and pathological aspects and their consequences. Semin Immunol 29:49–61

    Article  CAS  Google Scholar 

  • Anssari Moin D, Hassan B, Wismeijer D (2016) A patient specific biomechanical analysis of custom root analogue implant designs on alveolar bone stress: a finite element study. Int J Dent 2016:8242535

    Article  Google Scholar 

  • Bahraminasab M, Arab S, Safari M, Talebi A, Kavakebian F, Doostmohammadi N (2021) In vivo performance of Al2O3-Ti bone implants in the rat femur. J Orthop Surg Res 16:79

    Article  Google Scholar 

  • Bailey DA, McCulloch RG (1990) Bone tissue and physical activity. Can J Sport Sci 15:229–239

    CAS  Google Scholar 

  • Barbeck M, Udeabor S, Lorenz J, Kubesch A, Choukroun J, Sader R et al (2014) Induction of multinucleated giant cells in response to small sized bovine bone substitute (Bio-OssTM) results in an enhanced early implantation bed vascularization. Ann Maxillofac Surg 4:150–157

    Article  CAS  Google Scholar 

  • Barbeck M, Najman S, Stojanović S, Mitić Ž, Živković JM, Choukroun J et al (2015a) Addition of blood to a phycogenic bone substitute leads to increased in vivo vascularization. Biomed Mater 10:055007

    Article  Google Scholar 

  • Barbeck M, Dard M, Kokkinopoulou M, Markl J, Booms P, Sader R et al (2015b) Small-sized granules of biphasic bone substitutes support fast implant bed vascularization. Biomatter 5:e1056943

    Article  CAS  Google Scholar 

  • Barbeck M, Unger RE, Booms P, Dohle E, Sader RA, Kirkpatrick CJ et al (2016) Monocyte preseeding leads to an increased implant bed vascularization of biphasic calcium phosphate bone substitutes via vessel maturation. J Biomed Mater Res A 104:2928–2935

    Article  CAS  Google Scholar 

  • Barbeck M, Booms P, Unger R, Hoffmann V, Sader R, Kirkpatrick CJ et al (2017) Multinucleated giant cells in the implant bed of bone substitutes are foreign body giant cells—new insights into the material-mediated healing process. J Biomed Mater Res A 105:1105–1111

    Article  CAS  Google Scholar 

  • Beckmann N, Maier P (2011) Noninvasive small rodent imaging: significance for the 3R principles. In: Kiessling F, Pichler BJ (eds) Small animal imaging: basics and practical guide. Springer, Berlin, Heidelberg, pp 47–57

    Chapter  Google Scholar 

  • Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol 7:452–464

    Article  CAS  Google Scholar 

  • Bershadsky A, Kozlov M, Geiger B (2006) Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18:472–481

    Article  CAS  Google Scholar 

  • Bez M, Sheyn D, Tawackoli W (2017) In situ bone tissue engineering via ultrasound-mediated gene delivery to endogenous progenitor cells in mini-pigs. Sci Transl Med 9:eaal3128

    Article  Google Scholar 

  • Body SC (1996) Platelet activation and interactions with the microvasculature. J Cardiovasc Pharmacol 27(Suppl 1):S13–S25

    Article  CAS  Google Scholar 

  • Bohner M, Baroud G, Bernstein A, Doebelin N, Galea L, Hesse B et al (2017) Characterization and distribution of mechanically competent mineralized tissue in micropores of β-tricalcium phosphate bone substitutes. Mater Today 20:106–115

    Article  CAS  Google Scholar 

  • Büchter A, Joos U, Wiesmann H-P, Seper L, Meyer U (2006) Biological and biomechanical evaluation of interface reaction at conical screw-type implants. Head Face Med 2:5

    Article  Google Scholar 

  • Burguete RL, Johns RB, King T, Patterson EA (1994) Tightening characteristics for screwed joints in osseointegrated dental implants. J Prosthet Dent 71:592–599

    Article  CAS  Google Scholar 

  • Burmeister JS, Vrany J, Reichert WM, Truskey GA (1996) Effect of fibronectin amount and conformation on the strength of endothelial cell adhesion to HEMA/EMA copolymers. J Biomed Mater Res 30:13–22

    Article  CAS  Google Scholar 

  • Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25:889–902

    Article  CAS  Google Scholar 

  • Cavalcanti-Adam EA, Micoulet A, Blümmel J, Auernheimer J, Kessler H, Spatz JP (2006) Lateral spacing of integrin ligands influences cell spreading and focal adhesion assembly. Eur J Cell Biol 85:219–224

    Article  CAS  Google Scholar 

  • Celikkin N, Mastrogiacomo S, Jaroszewicz J, Walboomers XF, Swieszkowski W (2018) Gelatin methacrylate scaffold for bone tissue engineering: the influence of polymer concentration. J Biomed Mater Res A 106:201–209

    Article  CAS  Google Scholar 

  • Cha JY, Pereira MD, Smith AA, Houschyar KS, Yin X, Mouraret S et al (2015) Multiscale analyses of the bone-implant interface. J Dent Res 94:482–490

    Article  CAS  Google Scholar 

  • Chang H-I, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. Regenerative medicine and tissue engineering-cells and biomaterials. InTechOpen

    Google Scholar 

  • Chen X, Xie L, Du R, Deng F (2012) Design and fabrication of custom-made dental implants. J Mech Sci Technol 26:1993–1998

    Article  Google Scholar 

  • Chen J, Zhang Z, Chen X, Zhang X (2017) Influence of custom-made implant designs on the biomechanical performance for the case of immediate post-extraction placement in the maxillary esthetic zone: a finite element analysis. Comput Methods Biomech Biomed Engin 20:636–644

    Article  Google Scholar 

  • Cheng C, Alt V, Dimitrakopoulou-Strauss A, Pan L, Thormann U, Schnettler R et al (2013) Evaluation of new bone formation in normal and osteoporotic rats with a 3-mm femur defect: functional assessment with dynamic PET-CT (dPET-CT) using 2-deoxy-2-[(18)F]fluoro-D-glucose ( (18)F-FDG) and (18)F-fluoride. Mol Imaging Biol 15:336–344

    Article  Google Scholar 

  • Dantas TA, Carneiro Neto JP, Alves JL, Vaz PCS, Silva FS (2020) In silico evaluation of the stress fields on the cortical bone surrounding dental implants: comparing root-analogue and screwed implants. J Mech Behav Biomed Mater 104:103667

    Article  CAS  Google Scholar 

  • Delloye C, Cornu O, Druez V, Barbier O (2007) Bone allografts. J Bone Joint Surg 89-B:574–580

    Article  Google Scholar 

  • Delpiano MA, Acker H (1985) Extracellular pH changes in the superfused cat carotid body during hypoxia and hypercapnia. Brain Res 342:273–280

    Article  CAS  Google Scholar 

  • Dos Santos Marsico V, Lehmann RB, de Assis Claro CA, Amaral M, Vitti RP, Neves ACC et al (2017) Three-dimensional finite element analysis of occlusal splint and implant connection on stress distribution in implant-supported fixed dental prosthesis and peri-implantal bone. Mater Sci Eng C Mater Biol Appl 80:141–148

    Article  Google Scholar 

  • Duncan I, Ingold N (2018) The clinical value of xSPECT/CT Bone versus SPECT/CT. A prospective comparison of 200 scans. Eur J Hybrid Imaging 2:1–12

    Article  Google Scholar 

  • El-Ghannam A (2005) Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices 2:87–101

    Article  Google Scholar 

  • Elliott SR, Robinson RA (1957) The water content of bone. I. The mass of water, inorganic crystals, organic matrix, and CO2 space components in a unit volume of the dog bone. J Bone Joint Surg Am 39-A:167–188

    CAS  Google Scholar 

  • Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM et al (2008) Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14:299–305

    Article  CAS  Google Scholar 

  • Ercan B, Webster T (2014) Cell response to nanoscale features and its implications in tissue regeneration: an orthopedic perspective. In: Nanotechnology and regenerative engineering. p 145–190

    Google Scholar 

  • Fedorovich NE, Alblas J, Hennink WE, Öner FC, Dhert WJA (2011) Organ printing: the future of bone regeneration? Trends Biotechnol 29:601–606

    Article  CAS  Google Scholar 

  • Filippi M, Born G, Chaaban M, Scherberich A (2020) Natural polymeric scaffolds in bone regeneration. Front Bioeng Biotechnol 8:474

    Article  Google Scholar 

  • Folkman M, Becker A, Meinster I, Masri M, Ormianer Z (2020) Comparison of bone-to-implant contact and bone volume around implants placed with or without site preparation: a histomorphometric study in rabbits. Sci Rep 10:12446

    Article  CAS  Google Scholar 

  • Fragogeorgi EA, Rouchota M, Georgiou M, Velez M, Bouziotis P, Loudos G (2019) In vivo imaging techniques for bone tissue engineering. J Tissue Eng 10:2041731419854586

    Article  Google Scholar 

  • Friedl P, Zänker KS, Bröcker EB (1998) Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech 43:369–378

    Article  CAS  Google Scholar 

  • Frohlich M, Grayson WL, Wan LQ, Marolt D, Drobnic M, Vunjak-Novakovic G (2008) Tissue engineered bone grafts: biological requirements, tissue culture and clinical relevance. Curr Stem Cell Res Ther 3:254–264

    Article  CAS  Google Scholar 

  • Frost OG, Owji N, Thorogate R, Kyriakidis C, Sawadkar P, Mordan N et al (2021) Cell morphology as a design parameter in the bioengineering of cell–biomaterial surface interactions. Biomater Sci 9:8032–8050

    Article  CAS  Google Scholar 

  • Gao C, Peng S, Feng P, Shuai C (2017) Bone biomaterials and interactions with stem cells. Bone Res 5:17059

    Article  CAS  Google Scholar 

  • Gensel J, Zhang B (2015) Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 22:1–11

    Article  Google Scholar 

  • Ghanaati S (2012) Non-cross-linked porcine-based collagen I–III membranes do not require high vascularization rates for their integration within the implantation bed: a paradigm shift. Acta Biomater 8:3061–3072

    Article  CAS  Google Scholar 

  • Ghanaati S, Barbeck M, Orth C, Willershausen I, Thimm BW, Hoffmann C et al (2010) Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo. Acta Biomater 6:4476–4487

    Article  CAS  Google Scholar 

  • Ghanaati S, Schlee M, Webber MJ, Willershausen I, Barbeck M, Balic E et al (2011a) Evaluation of the tissue reaction to a new bilayered collagen matrix in vivo and its translation to the clinic. Biomed Mater 6:015010

    Article  Google Scholar 

  • Ghanaati S, Unger RE, Webber MJ, Barbeck M, Orth C, Kirkpatrick JA et al (2011b) Scaffold vascularization in vivo driven by primary human osteoblasts in concert with host inflammatory cells. Biomaterials 32:8150–8160

    Article  CAS  Google Scholar 

  • Hench LL (2015) The future of bioactive ceramics. J Mater Sci Mater Med 26:86

    Article  Google Scholar 

  • Hériveaux Y, Nguyen V-H, Brailovski V, Gorny C, Haïat G (2019) Reflection of an ultrasonic wave on the bone−implant interface: effect of the roughness parameters. J Acoust Soc Am 145:3370–3381

    Article  Google Scholar 

  • Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  CAS  Google Scholar 

  • Hu N, Jiang D, Huang E, Liu X, Li R, Liang X et al (2013) BMP9-regulated angiogenic signaling plays an important role in the osteogenic differentiation of mesenchymal progenitor cells. J Cell Sci 126:532–541

    Article  CAS  Google Scholar 

  • Jell G, Stevens MM (2006) Gene activation by bioactive glasses. J Mater Sci Mater Med 17:997–1002

    Article  CAS  Google Scholar 

  • Joos U, Vollmer D, Kleinheinz J (2000) [Effect of implant geometry on strain distribution in peri-implant bone]. Mund Kiefer Gesichtschir 4:143–147

    Google Scholar 

  • Kang Y, Mochizuki N, Khademhosseini A, Fukuda J, Yang Y (2015) Engineering a vascularized collagen-β-tricalcium phosphate graft using an electrochemical approach. Acta Biomater 11:449–458

    Article  CAS  Google Scholar 

  • Kazimierczak P, Przekora A (2020) Osteoconductive and osteoinductive surface modifications of biomaterials for bone regeneration: a concise review. Coatings 10:971

    Article  CAS  Google Scholar 

  • Keselowsky BG, Collard DM, García AJ (2003) Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res A 66:247–259

    Article  Google Scholar 

  • Klimek K, Belcarz A, Pazik R, Sobierajska P, Han T, Wiglusz RJ et al (2016) “False” cytotoxicity of ions-adsorbing hydroxyapatite—corrected method of cytotoxicity evaluation for ceramics of high specific surface area. Mater Sci Eng C 65:70–79

    Article  CAS  Google Scholar 

  • Knight MN, Hankenson KD (2013) Mesenchymal stem cells in bone regeneration. Adv Wound Care (New Rochelle) 2:306–316

    Article  Google Scholar 

  • Kokubo T (1995) Bioactivity of bioactive filler-resin cement: proceedings of the 8th International Symposium on Ceramics in Medicine. Bioceramics 8:213–217

    CAS  Google Scholar 

  • Lagonegro P, Rossi F, Galli C, Smerieri A, Alinovi R, Pinelli S et al (2017) A cytotoxicity study of silicon oxycarbide nanowires as cell scaffold for biomedical applications. Mater Sci Eng C 73:465–471

    Article  CAS  Google Scholar 

  • Lang LA, Kang B, Wang RF, Lang BR (2003) Finite element analysis to determine implant preload. J Prosthet Dent 90:539–546

    Article  Google Scholar 

  • Le X, Poinern GEJ, Ali N, Berry CM, Fawcett D (2013) Engineering a biocompatible scaffold with either micrometre or nanometre scale surface topography for promoting protein adsorption and cellular response. Int J Biomater 2013:782549

    Article  Google Scholar 

  • LeBaron RG, Athanasiou KA (2000) Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Eng 6:85–103

    Article  CAS  Google Scholar 

  • Lee SJ, Lim GJ, Lee J-W, Atala A, Yoo JJ (2006) In vitro evaluation of a poly(lactide-co-glycolide)–collagen composite scaffold for bone regeneration. Biomaterials 27:3466–3472

    Article  CAS  Google Scholar 

  • Lee J-M, Kim T-S, Kim T-H (2018) Treatment of periprosthetic femoral fractures following hip arthroplasty. Hip Pelvis 30:78–85

    Article  Google Scholar 

  • Lima TVM, Bhure U, Pérez Lago MS, Thali Y, Matijasevic S, Roos J et al (2020) Impact of metal implants on xSPECT/CT Bone reconstruction: the “shining metal artefact”. Eur J Hybrid Imaging 4:18

    Article  Google Scholar 

  • Liu X, Yuan L, Li D, Tang Z, Wang Y, Chen G et al (2014a) Blood compatible materials: state of the art. J Mater Chem B 2:5718–5738

    Article  CAS  Google Scholar 

  • Liu Y, Cai D, Yang J, Wang Y, Zhang X, Yin S (2014b) In vitro hemocompatibility evaluation of poly (4-hydroxybutyrate) scaffold. Int J Clin Exp Med 7:1233–1243

    Google Scholar 

  • Lorkowski J, Mrzygłód MM, Kotela A, Kotela I (2014) Application of rapid computer modeling in the analysis of the stabilization method in intraoperative femoral bone shaft fracture during revision hip arthroplasty—a case report. Pol Orthop Traumatol 79:138–144

    Google Scholar 

  • Lorkowski J, Wilk R, Pokorski M (2021) In silico evaluation of treatment of periprosthetic fractures in elderly patients after hip arthroplasty. In: Pokorski M (ed) Medical and biomedical updates. Springer International Publishing, Cham, pp 115–123

    Google Scholar 

  • Malafaya PB, Reis RL (2009) Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater 5:644–660

    Article  CAS  Google Scholar 

  • McKittrick J, Chen PY, Tombolato L, Novitskaya EE, Trim MW, Hirata GA et al (2010) Energy absorbent natural materials and bioinspired design strategies: a review. Mater Sci Eng C 30:331–342

    Article  CAS  Google Scholar 

  • McNally AK, Anderson JM (2002) Beta1 and beta2 integrins mediate adhesion during macrophage fusion and multinucleated foreign body giant cell formation. Am J Pathol 160:621–630

    Article  CAS  Google Scholar 

  • Meredith N, Alleyne D, Cawley P (1996) Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res 7:261–267

    Article  CAS  Google Scholar 

  • Montazerolghaem M, Rasmusson A, Melhus H, Engqvist H, Karlsson OM (2016) Simvastatin-doped pre-mixed calcium phosphate cement inhibits osteoclast differentiation and resorption. J Mater Sci Mater Med 27:83

    Article  CAS  Google Scholar 

  • Murer AM, Hirschmann MT, Amsler F, Rasch H, Huegli RW (2020) Bone SPECT/CT has excellent sensitivity and specificity for diagnosis of loosening and patellofemoral problems after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 28:1029–1035

    Article  Google Scholar 

  • Murphy CM, O’Brien FJ, Little DG, Schindeler A (2013) Cell-scaffold interactions in the bone tissue engineering triad. Eur Cell Mater 26:120–132

    Article  CAS  Google Scholar 

  • Neff LP, Tillman BW, Yazdani SK, Machingal MA, Yoo JJ, Soker S et al (2011) Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo. J Vasc Surg 53:426–434

    Article  Google Scholar 

  • Pagliani L, Sennerby L, Petersson A, Verrocchi D, Volpe S, Andersson P (2013) The relationship between resonance frequency analysis (RFA) and lateral displacement of dental implants: an in vitro study. J Oral Rehabil 40:221–227

    Article  CAS  Google Scholar 

  • Park JY, Gemmell CH, Davies JE (2001) Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials 22:2671–2682

    Article  CAS  Google Scholar 

  • Pena CD, Zhang S, Majeska R, Venkatesh T, Vazquez M (2019) Invertebrate retinal progenitors as regenerative models in a microfluidic system. Cell 8:1301

    Article  CAS  Google Scholar 

  • Pirker W, Kocher A (2008) Immediate, non-submerged, root-analogue zirconia implant in single tooth replacement. Int J Oral Maxillofac Surg 37:293–295

    Article  CAS  Google Scholar 

  • Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14:15–56

    Article  CAS  Google Scholar 

  • Przekora A (2019) The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. Mater Sci Eng C 97:1036–1051

    Article  CAS  Google Scholar 

  • Przekora A, Czechowska J, Pijocha D, Ślósarczyk A, Ginalska G (2014) Do novel cement-type biomaterials reveal ion reactivity that affects cell viability in vitro? Open Life Sci 9:277–289

    Article  CAS  Google Scholar 

  • Ravarian R, Zhong X, Barbeck M, Ghanaati S, Kirkpatrick CJ, Murphy CM et al (2013) Nanoscale chemical interaction enhances the physical properties of bioglass composites. ACS Nano 7:8469–8483

    Article  CAS  Google Scholar 

  • Romagnoli C, Brandi ML (2014) Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells 6:144

    Article  Google Scholar 

  • Römer W, Kuwert T, Olk A, Hennig F, Bautz W (2005) Assessment of aseptic loosening of the acetabular component in a total hip replacement with 99m Tc-DPD-SPECT/spiral-CT hybrid imaging. Nuklearmedizin 44:N58–N60

    Google Scholar 

  • Rothamel D, Schwarz F, Sager M, Herten M, Sculean A, Becker J (2005) Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implants Res 16:369–378

    Article  Google Scholar 

  • Saiz E, Zimmermann EA, Lee JS, Wegst UG, Tomsia AP (2013) Perspectives on the role of nanotechnology in bone tissue engineering. Dent Mater 29:103–115

    Article  CAS  Google Scholar 

  • Salakhutdinov I, VandeVord P, Palyvoda O, Matthew H, Handa H, Mao G et al (2008) Fibronectin adsorption to nanopatterned silicon surfaces. Biomedical Optics: Optical Society of America, p BSuE11

    Google Scholar 

  • Schwarz F, Rothamel D, Herten M, Sager M, Becker J (2006) Angiogenesis pattern of native and cross-linked collagen membranes: an immunohistochemical study in the rat. Clin Oral Implants Res 17:403–409

    Article  Google Scholar 

  • Shah FA, Stenlund P, Martinelli A, Thomsen P, Palmquist A (2016) Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography. J Mater Sci Mater Med 27:1–9

    Article  CAS  Google Scholar 

  • Shao R, Dong Y, Zhang S, Wu X, Huang X, Sun B et al (2022) State of the art of bone biomaterials and their interactions with stem cells: current state and future directions. Biotechnol J 17:e2100074

    Article  Google Scholar 

  • Shattil SJ, Cunningham M, Hoxie JA (1987) Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood 70:307–315

    Article  CAS  Google Scholar 

  • Shi Y, Chen J, Karner CM, Long F (2015) Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci 112:4678–4683

    Article  CAS  Google Scholar 

  • Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11:18–25

    Article  CAS  Google Scholar 

  • Stocchero M, Jinno Y, Toia M, Ahmad M, Papia E, Yamaguchi S et al (2019) Intraosseous temperature change during installation of dental implants with two different surfaces and different drilling protocols: an in vivo study in sheep. J Clin Med 8:1198

    Article  CAS  Google Scholar 

  • Szmukler-Moncler S, Piattelli A, Favero GA, Dubruille JH (2000) Considerations preliminary to the application of early and immediate loading protocols in dental implantology. Clin Oral Implants Res 11:12–25

    Article  CAS  Google Scholar 

  • Terranova L, Mallet R, Perrot R, Chappard D (2016) Polystyrene scaffolds based on microfibers as a bone substitute; development and in vitro study. Acta Biomater 29:380–388

    Article  CAS  Google Scholar 

  • Timmins PA, Wall JC (1977) Bone water. Calc Tissue Res 23:1–5

    Article  CAS  Google Scholar 

  • Tong S, Xu D-P, Liu Z-M, Du Y, Wang X-K (2016) Synthesis of and in vitro and in vivo evaluation of a novel TGF-1-SF-CS three-dimensional scaffold for bone tissue engineering. Int J Mol Med 38:367–380

    Article  CAS  Google Scholar 

  • Trindade R, Albrektsson T, Galli S, Prgomet Z, Tengvall P, Wennerberg A (2018) Osseointegration and foreign body reaction: titanium implants activate the immune system and suppress bone resorption during the first 4 weeks after implantation. Clin Implant Dent Relat Res 20:82–91

    Article  Google Scholar 

  • Tsigkou O, Hench LL, Boccaccini AR, Polak JM, Stevens MM (2007) Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass composite films in the absence of osteogenic supplements. J Biomed Mater Res A 80:837–851

    Article  CAS  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  CAS  Google Scholar 

  • Ventura M, Boerman OC, de Korte C, Rijpkema M, Heerschap A, Oosterwijk E et al (2014) Preclinical imaging in bone tissue engineering. Tissue Eng Part B Rev 20:578–595

    Article  Google Scholar 

  • Vimalraj S, Yuvashree R, Hariprabu G, Subramanian R, Murali P, Veeraiyan DN et al (2021) Zebrafish as a potential biomaterial testing platform for bone tissue engineering application: a special note on chitosan based bioactive materials. Int J Biol Macromol 175:379–395

    Article  CAS  Google Scholar 

  • Wang RF, Kang B, Lang LA, Razzoog ME (2009) The dynamic natures of implant loading. J Prosthet Dent 101:359–371

    Article  Google Scholar 

  • Wang C, Wang S, Li K, Ju Y, Li J, Zhang Y et al (2014) Preparation of laponite bioceramics for potential bone tissue engineering applications. PLoS One 9:e99585

    Article  Google Scholar 

  • Wang Q, Chen B, Cao M, Sun J, Wu H, Zhao P et al (2016) Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials 86:11–20

    Article  CAS  Google Scholar 

  • Washburn NR, Weir M, Anderson P, Potter K (2004) Bone formation in polymeric scaffolds evaluated by proton magnetic resonance microscopy and X-ray microtomography. J Biomed Mater Res A 69:738–747

    Article  Google Scholar 

  • Weber M, Umrath F, Steinle H, Schmitt LF, Yu LT, Schlensak C et al (2021) Influence of human jaw periosteal cells seeded β-tricalcium phosphate scaffolds on blood coagulation. Int J Mol Sci 22:1–15

    Article  Google Scholar 

  • Wong KK, Piert M (2013) Dynamic bone imaging with 99mTc-labeled diphosphonates and 18F-NaF: mechanisms and applications. J Nucl Med 54:590–599

    Article  CAS  Google Scholar 

  • Xia L, Feng B, Wang P, Ding S, Liu Z, Zhou J et al (2012) In vitro and in vivo studies of surface-structured implants for bone formation. Int J Nanomedicine 7:4873–4881

    Article  CAS  Google Scholar 

  • Xu HH, Wang P, Wang L, Bao C, Chen Q, Weir MD et al (2017) Calcium phosphate cements for bone engineering and their biological properties. Bone Res 5:1–19

    Article  CAS  Google Scholar 

  • Yamada KM (1991) Adhesive recognition sequences. J Biol Chem 266:12809–12812

    Article  CAS  Google Scholar 

  • Yang F, Wang J, Hou J, Guo H, Liu C (2013) Bone regeneration using cell-mediated responsive degradable PEG-based scaffolds incorporating with rhBMP-2. Biomaterials 34:1514–1528

    Article  CAS  Google Scholar 

  • Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U S A 86:933–937

    Article  CAS  Google Scholar 

  • Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang B et al (2016) PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther 11:216–225

    Article  CAS  Google Scholar 

  • Zhang Y, Li R, Wu W, Ya Q, Tang X, Ye W et al (2018) Adhesion and proliferation of osteoblast-like cells on porous polyetherimide scaffolds. Biomed Res Int 2018:1491028

    Article  Google Scholar 

  • Zomorodian E, Baghaban Eslaminejad M (2012) Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int 2012:980353

    Article  Google Scholar 

  • Zorio E, Gilabert-Estellés J, España F, Ramón LA, Cosín R, Estellés A (2008) Fibrinolysis: the key to new pathogenetic mechanisms. Curr Med Chem 15:923–929

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwesha Barik .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barik, A., Kirtania, M.D. (2023). In-Vitro and In-Vivo Tracking of Cell-Biomaterial Interaction to Monitor the Process of Bone Regeneration. In: Chakravorty, N., Shukla, P.C. (eds) Regenerative Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-6008-6_15

Download citation

Publish with us

Policies and ethics