Skip to main content

Regenerative Approaches in the Nervous System

  • Chapter
  • First Online:
Regenerative Medicine
  • 563 Accesses

Abstract

The nervous system is the most unique system of the human body in more than one way. The excitable tissue that forms the nervous system generates and transmits electrical impulses that are responsible for command and control of the entire body and its physiological processes. Above all, the nervous system differs from the rest of the body in the way it responds to injury. Unlike the rest of the body, injuries to the nervous system do not heal well and lost functions are rarely recovered. The aftermath of injury and scarring is also quite unusual with the nervous system injuries, making repair and regeneration process more complex. Current clinical approaches are primarily focused on damage control rather than regeneration or functional restoration following any such injuries. However, several innovative approaches are being explored in discovery biology, pre-clinical and clinical settings. Among these, interdisciplinary approaches integrating neurobiology, material sciences, electrophysiology, computer interfaces and advanced robotics all come together to repair and restore the injured nervous system, and thereby redefine our understanding and concepts of regenerative medicine. In this chapter, we will briefly visit the structural and functional organisation of the nervous system into central and peripheral systems, discuss the nature and pathophysiology of the nervous injuries to understand why they are so different from the rest of the body, and explore the regenerative approaches in depth. We will also discuss, in brief, the role of translational gap between the approaches being explored and the clinical practice to better explain the practical challenges in the field of neuro-regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AD-MSC:

Adipose derived mesenchymal stem cells

AEC:

Amniotic epithelial cells

AF-MSC:

Amniotic foetal mesenchymal stem cells

ANS:

Autonomic nervous system

ASIA:

American spinal cord injury Association

BBB:

Blood brain barrier

BDNF:

Brain-derived neurotrophic factor

BM-MSC:

Bone marrow derived mesenchymal stem cells

BSCB:

Blood spinal cord barrier

CNI:

Central nervous system injuries

CNS:

Central nervous system

CSPG:

Chondroitin sulphate proteoglycans

CTGF:

Connective tissue growth factor

DRG:

Dorsal root ganglia

EEG:

Electroencephalogram

EGF:

Epidermal growth factor

EPC:

Endothelial progenitor cells

ESC:

Embryonic stem cells

FGF:

Fibroblast growth factor

FGF-2:

Fibroblast growth factor 2

FIM:

Functional independence measure

GCS:

Glasgow coma scale

G-CSF:

Granulocyte colony stimulating factor

GDNF:

Glial cell-line derived neurotrophic factor

GGF:

Glial growth factor

hFSC:

Human foetal stem cells

HGF:

Hepatocyte growth factor

IGF-1:

Insulin like growth factor 1

iPSC:

Induced pluripotent stem cells

MAP:

Myelin-associated proteins

MSC:

Mesenchymal stem cells

NGF:

Nerve growth factor

NPC:

Neural progenitor cells

NSC:

Neural stem cells

NT-3:

Neurotrophin-3

OEC:

Olfactory ensheathing cells

OPC:

Oligodendrocyte precursor cells

PCL:

Poly caprolactone

PDGF:

Platelet derived growth factor

PEG:

Polyethylene glycol

pHEMA:

Poly hydroxyethyl methacrylate

PLGA:

Poly lactic-co-glycolic acid

PLL:

Poly-l-lysine

PNI:

Peripheral nerve injuries

PNS:

Peripheral nervous system

PU:

Polyurethane

SCI:

Spinal cord injuries

SCIM:

Spinal cord independence measure

SCs:

Schwann cells

TBI:

Traumatic brain injuries

TGF-β1:

Transforming growth factor Β1

TIA:

Transient ischemic attacks

UBC-MSC:

Umbilical cord blood mesenchymal stem cells

VEGF:

Vascular endothelial growth factor

References

  • Acorda Therapeutics (2018) AC105 in patients with acute traumatic spinal cord injury [Online]. https://ClinicalTrials.gov/show/NCT01750684 [Accessed]

  • Adoni A, McNett M (2007) The pupillary response in traumatic brain injury: a guide for trauma nurses. J Trauma Nurs 14:191–196; quiz 197–8

    Article  Google Scholar 

  • Agbay A, Edgar JM, Robinson M, Styan T, Wilson K, Schroll J, Ko J, Mohtaram NK, Jun MB-G, Willerth SM (2016) Biomaterial strategies for delivering stem cells as a treatment for spinal cord injury. Cells Tissues Organs 202:42–51

    Article  CAS  Google Scholar 

  • Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, Choi D, Fehlings MG (2017) Traumatic spinal cord injury—repair and regeneration. Neurosurgery 80:S9–S22

    Article  Google Scholar 

  • Al-Qattan MM (2002) End-to-side nerve repair. J Hand Surg Am 27:739; author reply 739–40

    Article  Google Scholar 

  • Álvarez Z, Castaño O, Castells AA, Mateos-Timoneda MA, Planell JA, Engel E, Alcántara S (2014) Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials 35:4769–4781

    Article  Google Scholar 

  • Alvites R, Rita Caseiro A, Santos Pedrosa S, Vieira Branquinho M, Ronchi G, Geuna S, Varejão ASP, Colette Maurício A (2018) Peripheral nerve injury and axonotmesis: state of the art and recent advances. Cogent Med 5:1466404

    Article  Google Scholar 

  • American Spinal Injury Association (n.d.) Standard neurological classification of spinal cord injury. ASIA Impairment Scale Guidelines. ASIA

    Google Scholar 

  • Anderson AJ, Piltti KM, Hooshmand MJ, Nishi RA, Cummings BJ (2017) Preclinical efficacy failure of human CNS-derived stem cells for use in the pathway study of cervical spinal cord injury. Stem Cell Reports 8:249–263

    Article  Google Scholar 

  • AOSpine North America Research Network (2016) Riluzole in spinal cord injury study (RISCIS). ClinicalTrials.gov

    Google Scholar 

  • Arsenijevic Y, Villemure JG, Brunet JF, Bloch JJ, Déglon N, Kostic C, Zurn A, Aebischer P (2001) Isolation of multipotent neural precursors residing in the cortex of the adult human brain. Exp Neurol 170:48–62

    Article  CAS  Google Scholar 

  • Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK (2019) Regenerative therapies for spinal cord injury. Tissue Eng Part B Rev 25:471–491

    Article  Google Scholar 

  • Azadi A, Hamidi M, Rouini MR (2013) Methotrexate-loaded chitosan nanogels as ‘Trojan Horses’ for drug delivery to brain: preparation and in vitro/in vivo characterization. Int J Biol Macromol 62:523–530

    Article  CAS  Google Scholar 

  • Bao C, Wang B, Yang F, Chen L (2018) Blockade of interleukin-7 receptor shapes macrophage alternative activation and promotes functional recovery after spinal cord injury. Neuroscience 371:518–527

    Article  CAS  Google Scholar 

  • Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M (2011) The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol 70:194–206

    Article  Google Scholar 

  • Bassilios Habre S, Bond G, Jing XL, Kostopoulos E, Wallace RD, Konofaos P (2018) The surgical management of nerve gaps: present and future. Ann Plast Surg 80:252–261

    Article  CAS  Google Scholar 

  • Bhandari PS (2019) Management of peripheral nerve injury. J Clin Orthop Trauma 10:862–866

    Article  CAS  Google Scholar 

  • Bishop J, Ring D (2009) Management of radial nerve palsy associated with humeral shaft fracture: a decision analysis model. J Hand Surg Am 34:991–6.e1

    Article  Google Scholar 

  • Bjugstad K, Lampe K, Kern D, Mahoney M (2010) Biocompatibility of poly (ethylene glycol)-based hydrogels in the brain: an analysis of the glial response across space and time. J Biomed Mater Res A 95:79–91

    Article  CAS  Google Scholar 

  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller F-J, Loring JF, Yamasaki TR, Poon WW, Green KN, Laferla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci 106:13594–13599

    Article  CAS  Google Scholar 

  • Bouma GJ, Muizelaar JP, Choi SC, Newlon PG, Young HF (1991) Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 75:685–693

    Article  CAS  Google Scholar 

  • Bouma GJ, Muizelaar JP, Stringer WA, Choi SC, Fatouros P, Young HF (1992) Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 77:360–368

    Article  CAS  Google Scholar 

  • Bracken MB, Holford TR (2002) Neurological and functional status 1 year after acute spinal cord injury: estimates of functional recovery in National Acute Spinal Cord Injury Study II from results modeled in National Acute Spinal Cord Injury Study III. J Neurosurg Spine 96:259–266

    Article  Google Scholar 

  • Bregman BS, Kunkel-Bagden E, Schnell L, Dai HN, Gao D, Schwab ME (1995) Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378:498–501

    Article  CAS  Google Scholar 

  • Brosius Lutz A, Barres BA (2014) Contrasting the glial response to axon injury in the central and peripheral nervous systems. Dev Cell 28:7–17

    Article  CAS  Google Scholar 

  • Brunet JF, Pellerin L, Arsenijevic Y, Magistretti P, Villemure JG (2002) A novel method for in vitro production of human glial-like cells from neurosurgical resection tissue. Lab Invest 82:809–812

    Article  Google Scholar 

  • Brunet JF, Pellerin L, Magistretti P, Villemure JG (2003) Cryopreservation of human brain tissue allowing timely production of viable adult human brain cells for autologous transplantation. Cryobiology 47:179–183

    Article  Google Scholar 

  • Bullock MR, Chesnut R, Ghajar J, Gordon D, Hartl R, Newell DW, Servadei F, Walters BC, Wilberger JE (2006) Surgical management of acute subdural hematomas. Neurosurgery 58:S16–S24; discussion Si–iv

    Google Scholar 

  • Capizzi A, Woo J, Verduzco-Gutierrez M (2020) Traumatic brain injury: an overview of epidemiology, pathophysiology, and medical management. Med Clin North Am 104:213–238

    Article  Google Scholar 

  • Carvalho CR, Oliveira JM, Reis RL (2019) Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit. Front Bioeng Biotechnol 7:337

    Article  Google Scholar 

  • Carvalho CR, Chang W, Silva-Correia J, Reis RL, Oliveira JM, Kohn J (2021) Engineering silk fibroin-based nerve conduit with neurotrophic factors for proximal protection after peripheral nerve injury. Adv Healthc Mater 10:2000753

    Article  CAS  Google Scholar 

  • Casha S (2013) Minocycline in acute spinal cord injury (MASC). NCT01828203. ClinicalTrials.gov

    Google Scholar 

  • Cashman CR, Hoke A (2015) Mechanisms of distal axonal degeneration in peripheral neuropathies. Neurosci Lett 596:33–50

    Article  CAS  Google Scholar 

  • Castanov V, Berger M, Ritsma B, Trier J, Hendry JM (2021) Optimizing the timing of peripheral nerve transfers for functional re-animation in cervical spinal cord injury: a conceptual framework. J Neurotrauma 38:3365–3375

    Article  Google Scholar 

  • Chang EH, Adorjan I, Mundim MV, Sun B, Dizon ML, Szele FG (2016) Traumatic brain injury activation of the adult subventricular zone neurogenic niche. Front Neurosci 10:332

    Article  Google Scholar 

  • Chen K, Marsh BC, Cowan M, Al’Joboori YD, Gigout S, Smith CC, Messenger N, Gamper N, Schwab ME, Ichiyama RM (2017) Sequential therapy of anti-Nogo-A antibody treatment and treadmill training leads to cumulative improvements after spinal cord injury in rats. Exp Neurol 292:135–144

    Article  CAS  Google Scholar 

  • Cheng S, Tereshchenko J, Zimmer V, Vachey G, Pythoud C, Rey M, Liefhebber J, Raina A, Streit F, Mazur A, Bähr M, Konstantinova P, Déglon N, Kügler S (2018) Therapeutic efficacy of regulable GDNF expression for Huntington’s and Parkinson’s disease by a high-induction, background-free “GeneSwitch” vector. Exp Neurol 309:79–90

    Article  CAS  Google Scholar 

  • Chhabra HS, Sarda K (2017) Clinical translation of stem cell based interventions for spinal cord injury—are we there yet? Adv Drug Deliv Rev 120:41–49

    Article  CAS  Google Scholar 

  • Ching RC, Wiberg M, Kingham PJ (2018) Schwann cell-like differentiated adipose stem cells promote neurite outgrowth via secreted exosomes and RNA transfer. Stem Cell Res Ther 9:1–12

    Article  Google Scholar 

  • Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K (2020) Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement 6:e12050

    Google Scholar 

  • Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, Van Gorp S, Leerink M, Tadokoro T, Marsala S (2018) A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell Stem Cell 22(941–950):e6

    Google Scholar 

  • Danilov CA, Steward O (2015) Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice. Exp Neurol 266:147–160

    Article  CAS  Google Scholar 

  • Davanzo JR, Sieg EP, Timmons SD (2017) Management of traumatic brain injury. Surg Clin North Am 97:1237–1253

    Article  Google Scholar 

  • Dienstknecht T, Klein S, Vykoukal J, Gehmert S, Koller M, Gosau M, Prantl L (2013) Type I collagen nerve conduits for median nerve repairs in the forearm. J Hand Surg Am 38:1119–1124

    Article  Google Scholar 

  • Dixon KJ, Theus MH, Nelersa CM, Mier J, Travieso LG, Yu T-S, Kernie SG, Liebl DJ (2015) Endogenous neural stem/progenitor cells stabilize the cortical microenvironment after traumatic brain injury. J Neurotrauma 32:753–764

    Article  Google Scholar 

  • Fairbairn NG, Ng-Glazier J, Meppelink AM, Randolph MA, Winograd JM, Redmond RW (2016) Improving outcomes in immediate and delayed nerve grafting of peripheral nerve gaps using light-activated sealing of neurorrhaphy sites with human amnion wraps. Plast Reconstr Surg 137:887–895

    Article  CAS  Google Scholar 

  • Fan Y, Ng S-Y (2020) Replacing what’s lost: a new era of stem cell therapy for Parkinson’s disease. Transl Neurodegener 9:1–10

    Article  CAS  Google Scholar 

  • Fan W, Gu J, Hu W, Deng A, Ma Y, Liu J, Ding F, Gu X (2008) Repairing a 35-mm-long median nerve defect with a chitosan/PGA artificial nerve graft in the human: a case study. Microsurgery 28:238–242

    Article  Google Scholar 

  • Fehlings MG, Perrin RG (2005) The role and timing of early decompression for cervical spinal cord injury: update with a review of recent clinical evidence. Injury 36(Suppl 2):B13–B26

    Article  Google Scholar 

  • Fon D, Zhou K, Ercole F, Fehr F, Marchesan S, Minter MR, Crack PJ, Finkelstein DI, Forsythe JS (2014) Nanofibrous scaffolds releasing a small molecule BDNF-mimetic for the re-direction of endogenous neuroblast migration in the brain. Biomaterials 35:2692–2712

    Article  CAS  Google Scholar 

  • Führmann T, Tam R, Ballarin B, Coles B, Donaghue IE, van der Kooy D, Nagy A, Tator C, Morshead C, Shoichet M (2016) Injectable hydrogel promotes early survival of induced pluripotent stem cell-derived oligodendrocytes and attenuates longterm teratoma formation in a spinal cord injury model. Biomaterials 83:23–36

    Article  Google Scholar 

  • Führmann T, Anandakumaran PN, Payne SL, Pakulska MM, Varga BV, Nagy A, Tator C, Shoichet MS (2018) Combined delivery of chondroitinase ABC and human induced pluripotent stem cell-derived neuroepithelial cells promote tissue repair in an animal model of spinal cord injury. Biomed Mater 13:024103

    Article  Google Scholar 

  • Galgano M, Toshkezi G, Qiu X, Russell T, Chin L, Zhao L-R (2017) Traumatic brain injury: current treatment strategies and future endeavors. Cell Transplant 26:1118–1130

    Article  Google Scholar 

  • Galindo LT, Filippo TR, Semedo P, Ariza CB, Moreira CM, Camara NO, Porcionatto MA (2011) Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int 2011:564089

    Article  Google Scholar 

  • Gil V, del Río JA (2012) Analysis of axonal growth and cell migration in 3D hydrogel cultures of embryonic mouse CNS tissue. Nat Protoc 7:268–280

    Article  CAS  Google Scholar 

  • Griffin JW, Hogan MV, Chhabra AB, Deal DN (2013) Peripheral nerve repair and reconstruction. J Bone Joint Surg Am 95:2144–2151

    Article  Google Scholar 

  • Grinsell D, Keating CP (2014) Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int 2014:698256

    Article  CAS  Google Scholar 

  • Guest JD, Moore SW, Aimetti AA, Kutikov AB, Santamaria AJ, Hofstetter CP, Ropper AE, Theodore N, Ulich TR, Layer RT (2018) Internal decompression of the acutely contused spinal cord: differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials 185:284–300

    Article  CAS  Google Scholar 

  • Guo Z-Y, Sun X, Xu X-L, Zhao Q, Peng J, Wang Y (2015) Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms. Neural Regen Res 10:651

    Article  CAS  Google Scholar 

  • Hadley MN, Walters BC, Grabb PA, Oyesiku NM, Przybylski GJ, Resnick DK, Ryken TC (2002) Pharmacological therapy after acute cervical spinal cord injury. Neurosurgery 50:S63–S72

    Article  CAS  Google Scholar 

  • Hall ED, Braughler JM (1981) Acute effects of intravenous glucocorticoid pretreatment on the in vitro peroxidation of cat spinal cord tissue. Exp Neurol 73:321–324

    Article  CAS  Google Scholar 

  • Han S, Wang B, Li X, Xiao Z, Han J, Zhao Y, Fang Y, Yin Y, Chen B, Dai J (2016) Bone marrow-derived mesenchymal stem cells in three-dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation. J Biomed Mater Res A 104:1759–1769

    Article  CAS  Google Scholar 

  • He L, Zhang Y, Zeng C, Ngiam M, Liao S, Quan D, Zeng Y, Lu J, Ramakrishna S (2009) Manufacture of PLGA multiple-channel conduits with precise hierarchical pore architectures and in vitro/vivo evaluation for spinal cord injury. Tissue Eng Part C Methods 15:243–255

    Article  CAS  Google Scholar 

  • Hobson MI, Green CJ, Terenghi G (2000) VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J Anat 197:591–605

    Article  CAS  Google Scholar 

  • Hofstetter CP, Holmström NA, Lilja JA, Schweinhardt P, Hao J, Spenger C, Wiesenfeld-Hallin Z, Kurpad SN, Frisén J, Olson L (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8:346–353

    Article  CAS  Google Scholar 

  • Hsieh FY, Lin HH, Hsu SH (2015) 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57

    Article  CAS  Google Scholar 

  • Hu W, Liu J, Jiang J, Yang F (2016) [Effect of bone marrow mesenchymal stem cells on angiogenesis in rats after brain injury]. Zhong Nan Da Xue Xue Bao Yi Xue Ban 41:489–495

    Google Scholar 

  • Huang L, Quan X, Liu Z, Ma T, Wu Y, Ge J, Zhu S, Yang Y, Liu L, Sun Z (2015) c-Jun gene-modified Schwann cells: upregulating multiple neurotrophic factors and promoting neurite outgrowth. Tissue Eng A 21:1409–1421

    Article  CAS  Google Scholar 

  • Huang L, Zhu L, Shi X, Xia B, Liu Z, Zhu S, Yang Y, Ma T, Cheng P, Luo K (2018) A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo. Acta Biomater 68:223–236

    Article  CAS  Google Scholar 

  • Huebner EA, Strittmatter SM (2009) Axon regeneration in the peripheral and central nervous systems. Results Probl Cell Differ 48:339–351

    CAS  Google Scholar 

  • Hutchinson PJ, Corteen E, Czosnyka M, Mendelow AD, Menon DK, Mitchell P, Murray G, Pickard JD, Rickels E, Sahuquillo J, Servadei F, Teasdale GM, Timofeev I, Unterberg A, Kirkpatrick PJ (2006) Decompressive craniectomy in traumatic brain injury: the randomized multicenter RESCUEicp study. Springer, Vienna, pp 17–20. www.RESCUEicp.com

    Google Scholar 

  • Ianof JN, Anghinah R (2017) Traumatic brain injury: an EEG point of view. Dement Neuropsychol 11:3–5

    Article  Google Scholar 

  • Inada Y, Morimoto S, Takakura Y, Nakamura T (2004) Regeneration of peripheral nerve gaps with a polyglycolic acid-collagen tube. Neurosurgery 55:640–648

    Article  Google Scholar 

  • Isaacs J (2010) Treatment of acute peripheral nerve injuries: current concepts. J Hand Surg Am 35:491–497. quiz 498

    Article  Google Scholar 

  • Jarrin S, Cabré S, Dowd E (2021) The potential of biomaterials for central nervous system cellular repair. Neurochem Int 144:104971

    Article  CAS  Google Scholar 

  • Jhaveri SJ, Hynd MR, Dowell-Mesfin N, Turner JN, Shain W, Ober CK (2009) Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the differentiation of neural cells. Biomacromolecules 10:174–183

    Article  CAS  Google Scholar 

  • Jiang S, Chen W, Zhang Y, Zhang Y, Chen A, Dai Q, Lin S, Lin H (2016) Acupuncture induces the proliferation and differentiation of endogenous neural stem cells in rats with traumatic brain injury. Evid Based Complement Alternat Med 2016:2047412

    Article  Google Scholar 

  • Jin K, Mao XO, Greenberg DA (2006) Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via Rho kinase signaling. J Neurobiol 66:236–242

    Article  CAS  Google Scholar 

  • Jinadasa S, Boone MD (2016) Controversies in the management of traumatic brain injury. Anesthesiol Clin 34:557–575

    Article  Google Scholar 

  • Johnson PJ, Tatara A, McCreedy DA, Shiu A, Sakiyama-Elbert SE (2010a) Tissue-engineered fibrin scaffolds containing neural progenitors enhance functional recovery in a subacute model of SCI. Soft Matter 6:5127–5137

    Article  CAS  Google Scholar 

  • Johnson PJ, Tatara A, Shiu A, Sakiyama-Elbert SE (2010b) Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplant 19:89–101

    Article  Google Scholar 

  • Kadoya K, Lu P, Nguyen K, Lee-Kubli C, Kumamaru H, Yao L, Knackert J, Poplawski G, Dulin JN, Strobl H, Takashima Y, Biane J, Conner J, Zhang SC, Tuszynski MH (2016) Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat Med 22:479–487

    Article  CAS  Google Scholar 

  • Kanekiyo K, Wakabayashi T, Nakano N, Yamada Y, Tamachi M, Suzuki Y, Fukushima M, Saito F, Abe S, Tsukagoshi C (2018) Effects of intrathecal injection of the conditioned medium from bone marrow stromal cells on spinal cord injury in rats. J Neurotrauma 35:521–532

    Article  Google Scholar 

  • Kim H-J, Lee J-H, Kim S-H (2010) Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J Neurotrauma 27:131–138

    Article  Google Scholar 

  • Kim H, Tator CH, Shoichet MS (2011) Chitosan implants in the rat spinal cord: biocompatibility and biodegradation. J Biomed Mater Res A 97:395–404

    Article  Google Scholar 

  • Kim D-Y, Choi Y-S, Kim S-E, Lee J-H, Kim S-M, Kim Y-J, Rhie J-W, Jun Y-J (2014) In vivo effects of adipose-derived stem cells in inducing neuronal regeneration in Sprague-Dawley rats undergoing nerve defect bridged with polycaprolactone nanotubes. J Korean Med Sci 29:S183–S192

    Article  CAS  Google Scholar 

  • Kim D-K, Nishida H, An SY, Shetty AK, Bartosh TJ, Prockop DJ (2016) Chromatographically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci 113:170

    Article  CAS  Google Scholar 

  • Klein S, Vykoukal J, Felthaus O, Dienstknecht T, Prantl L (2016) Collagen type I conduits for the regeneration of nerve defects. Materials 9:219

    Article  Google Scholar 

  • Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A (2016) Mesenchymal stem cells: identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods 99:62–68

    Article  CAS  Google Scholar 

  • Kokaia Z, Martino G, Schwartz M, Lindvall O (2012) Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat Neurosci 15:1078–1087

    Article  CAS  Google Scholar 

  • Kringle Pharma Inc. (2019) Phase I/II study of KP-100IT in acute spinal cord injury

    Google Scholar 

  • Kubiak CA, Grochmal J, Kung TA, Cederna PS, Midha R, Kemp SW (2020) Stem-cell–based therapies to enhance peripheral nerve regeneration. Muscle Nerve 61:449–459

    Article  Google Scholar 

  • Kukekov VG, Laywell ED, Suslov O, Davies K, Scheffler B, Thomas LB, O’Brien TF, Kusakabe M, Steindler DA (1999) Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp Neurol 156:333–344

    Article  CAS  Google Scholar 

  • Kumar A, Loane DJ (2012) Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun 26:1191–1201

    Article  Google Scholar 

  • Lampe KJ, Kern DS, Mahoney MJ, Bjugstad KB (2011) The administration of BDNF and GDNF to the brain via PLGA microparticles patterned within a degradable PEG-based hydrogel: protein distribution and the glial response. J Biomed Mater Res A 96:595–607

    Article  Google Scholar 

  • Lanier ST, Hill JR, Dy CJ, Brogan DM (2021) Evolving techniques in peripheral nerve regeneration. J Hand Surg Am 46:695–701

    Article  Google Scholar 

  • Laskowski A, Schmidt W, Dinkel K, Martínez-Sánchez M, Reymann KG (2005) bFGF and EGF modulate trauma-induced proliferation and neurogenesis in juvenile organotypic hippocampal slice cultures. Brain Res 1037:78–89

    Article  CAS  Google Scholar 

  • Lavorato A, Raimondo S, Boido M, Muratori L, Durante G, Cofano F, Vincitorio F, Petrone S, Tartara F, Vercelli A (2021) Mesenchymal stem cell treatment perspectives in peripheral nerve regeneration: systematic review. Int J Mol Sci 22:572

    Article  CAS  Google Scholar 

  • Lewandowski G, Steward O (2014) AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury. J Neurosci 34:9951–9962

    Article  Google Scholar 

  • Li Z, Guo G, Wang G, Guan C, Yue L (2014) Influence of neural stem cell transplantation on angiogenesis in rats with spinal cord injury. Genet Mol Res 13:6083–6092

    Article  CAS  Google Scholar 

  • Lim TC, Toh WS, Wang L-S, Kurisawa M, Spector M (2012) The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells. Biomaterials 33:3446–3455

    Article  CAS  Google Scholar 

  • Lin L, Du L (2018) The role of secreted factors in stem cells-mediated immune regulation. Cell Immunol 326:24–32

    Article  CAS  Google Scholar 

  • Liu S, Sandner B, Schackel T, Nicholson L, Chtarto A, Tenenbaum L, Puttagunta R, Müller R, Weidner N, Blesch A (2017) Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Acta Biomater 60:167–180

    Article  Google Scholar 

  • Lopes CD, Gonçalves NP, Gomes CP, Saraiva MJ, Pêgo AP (2017) BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury. Biomaterials 121:83–96

    Article  CAS  Google Scholar 

  • Lopes B, Sousa P, Alvites R, Branquinho M, Sousa AC, Mendonça C, Atayde LM, Luís AL, Varejão ASP, Maurício AC (2022) Peripheral nerve injury treatments and advances: one health perspective. Int J Mol Sci 23:918

    Article  Google Scholar 

  • Lozano R, Stevens L, Thompson BC, Gilmore KJ, Gorkin R III, Stewart EM, in het Panhuis M, Romero-Ortega M, Wallace GG (2015) 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67:264–273

    Article  CAS  Google Scholar 

  • Lu K-T, Sun C-L, Wo PYY, Yen H-H, Tang T-H, Ng M-C, Huang M-L, Yang Y-L (2010) Hippocampal neurogenesis after traumatic brain injury is mediated by vascular endothelial growth factor receptor-2 and the Raf/MEK/ERK cascade. J Neurotrauma 28:441–450

    Article  Google Scholar 

  • Lu P, Wang Y, Graham L, Mchale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA (2012) Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150:1264–1273

    Article  CAS  Google Scholar 

  • Lundborg G, Dahlin LB, Danielsen N (1991) Ulnar nerve repair by the silicone chamber technique. Scand J Plast Reconstr Surg Hand Surg 25:79–82

    Article  CAS  Google Scholar 

  • Lundborg G, Rosen B, Abrahamson S, Dahlin L, Danielsen N (1994) Tubular repair of the median nerve in the human forearm: preliminary findings. J Hand Surg 19:273–276

    Article  CAS  Google Scholar 

  • Luo L, He Y, Jin L, Zhang Y, Guastaldi FP, Albashari AA, Hu F, Wang X, Wang L, Xiao J (2021) Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries. Bioact Mater 6:638–654

    Article  CAS  Google Scholar 

  • Ma Y, Dong L, Zhou D, Li L, Zhang W, Zhen Y, Wang T, Su J, Chen D, Mao C (2019) Extracellular vesicles from human umbilical cord mesenchymal stem cells improve nerve regeneration after sciatic nerve transection in rats. J Cell Mol Med 23:2822–2835

    Article  CAS  Google Scholar 

  • Macaya D, Spector M (2012) Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater 7:012001

    Article  CAS  Google Scholar 

  • Mackay-Sim A, St John JA (2011) Olfactory ensheathing cells from the nose: clinical application in human spinal cord injuries. Exp Neurol 229:174–180

    Article  Google Scholar 

  • Mahmood A, Lu D, Chopp M (2004) Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 55:1185–1193

    Article  Google Scholar 

  • Maisonpierre PC, Belluscio L, Squinto S, Ip NY, Furth ME, Lindsay RM, Yancopoulos GD (1990) Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science 247:1446–1451

    Article  CAS  Google Scholar 

  • Margul DJ, Park J, Boehler RM, Smith DR, Johnson MA, McCreedy DA, He T, Ataliwala A, Kukushliev TV, Liang J (2016) Reducing neuroinflammation by delivery of IL-10 encoding lentivirus from multiple-channel bridges. Bioeng Transl Med 1:136–148

    Article  CAS  Google Scholar 

  • Marion DW, Darby J, Yonas H (1991) Acute regional cerebral blood flow changes caused by severe head injuries. J Neurosurg 74:407–414

    Article  CAS  Google Scholar 

  • Marmarou A, Lu J, Butcher I, Mchugh GS, Murray GD, Steyerberg EW, Mushkudiani NA, Choi S, Maas AIR (2007) Prognostic value of the Glasgow coma scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on Enrollment: an IMPACT analysis. J Neurotrauma 24:270–280

    Article  Google Scholar 

  • Marquardt LM, Ee X, Iyer N, Hunter D, Mackinnon SE, Wood MD, Sakiyama-Elbert SE (2015) Finely tuned temporal and spatial delivery of GDNF promotes enhanced nerve regeneration in a long nerve defect model. Tissue Eng A 21:2852–2864

    Article  CAS  Google Scholar 

  • Mastro-Martínez I, Pérez-Suárez E, Melen G, González-Murillo Á, Casco F, Lozano-Carbonero N, Gutiérrez-Fernández M, Díez-Tejedor E, Casado-Flores J, Ramírez-Orellana M (2015) Effects of local administration of allogenic adipose tissue-derived mesenchymal stem cells on functional recovery in experimental traumatic brain injury. Brain Inj 29:1497–1510

    Article  Google Scholar 

  • McDonald CM, Carter GT, Fritz RC, Anderson MW, Abresch RT, Kilmer DD (2000) Magnetic resonance imaging of denervated muscle: comparison to electromyography. Muscle Nerve 23:1431–1434

    Article  CAS  Google Scholar 

  • McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD (2006) Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 26:6651–6660

    Article  CAS  Google Scholar 

  • Meena P, Kakkar A, Kumar M, Khatri N, Nagar RK, Singh A, Malhotra P, Shukla M, Saraswat SK, Srivastava S, Datt R, Pandey S (2021) Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res 383:617–644

    Article  Google Scholar 

  • Meyer C, Stenberg L, Gonzalez-Perez F, Wrobel S, Ronchi G, Udina E, Suganuma S, Geuna S, Navarro X, Dahlin LB (2016) Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials 76:33–51

    Article  CAS  Google Scholar 

  • Mimura T, Dezawa M, Kanno H, Sawada H, Yamamoto I (2004) Peripheral nerve regeneration by transplantation of bone marrow stromal cell—derived Schwann cells in adult rats. J Neurosurg 101:806–812

    Article  Google Scholar 

  • Mo L, Yang Z, Zhang A, Li X (2010) The repair of the injured adult rat hippocampus with NT-3-chitosan carriers. Biomaterials 31:2184–2192

    Article  CAS  Google Scholar 

  • Modrak M, Talukder MAH, Gurgenashvili K, Noble M, Elfar JC (2020) Peripheral nerve injury and myelination: potential therapeutic strategies. J Neurosci Res 98:780–795

    Article  CAS  Google Scholar 

  • Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DY, Poss KD (2016) Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 354:630–634

    Article  CAS  Google Scholar 

  • Mokarram N, Dymanus K, Srinivasan A, Lyon JG, Tipton J, Chu J, English AW, Bellamkonda RV (2017) Immunoengineering nerve repair. Proc Natl Acad Sci 114:E5077–E5084

    Article  CAS  Google Scholar 

  • Molcanyi M, Riess P, Bentz K, Maegele M, Hescheler J, Schäfke B, Trapp T, Neugebauer E, Klug N, Schäfer U (2007) Trauma-associated inflammatory response impairs embryonic stem cell survival and integration after implantation into injured rat brain. J Neurotrauma 24:625–637

    Article  Google Scholar 

  • Moppett IK (2007) Traumatic brain injury: assessment, resuscitation and early management. Br J Anaesth 99:18–31

    Article  CAS  Google Scholar 

  • Moshayedi P, Nih LR, Llorente IL, Berg AR, Cinkornpumin J, Lowry WE, Segura T, Carmichael ST (2016) Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials 105:145–155

    Article  CAS  Google Scholar 

  • Nagashima K, Miwa T, Soumiya H, Ushiro D, Takeda-Kawaguchi T, Tamaoki N, Ishiguro S, Sato Y, Miyamoto K, Ohno T (2017) Priming with FGF2 stimulates human dental pulp cells to promote axonal regeneration and locomotor function recovery after spinal cord injury. Sci Rep 7:1–12

    Article  CAS  Google Scholar 

  • Nakano N, Nakai Y, Seo T-B, Yamada Y, Ohno T, Yamanaka A, Nagai Y, Fukushima M, Suzuki Y, Nakatani T (2010) Characterization of conditioned medium of cultured bone marrow stromal cells. Neurosci Lett 483:57–61

    Article  CAS  Google Scholar 

  • Namiki JUN, Kojima A, Tator CH (2000) Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma 17:1219–1231

    Article  CAS  Google Scholar 

  • Neal RA, McClugage SG III, Link MC, Sefcik LS, Ogle RC, Botchwey EA (2009) Laminin nanofiber meshes that mimic morphological properties and bioactivity of basement membranes. Tissue Eng Part C Methods 15:11–21

    Article  CAS  Google Scholar 

  • Neal RA, Tholpady SS, Foley PL, Swami N, Ogle RC, Botchwey EA (2012) Alignment and composition of laminin–polycaprolactone nanofiber blends enhance peripheral nerve regeneration. J Biomed Mater Res A 100:406–423

    Article  Google Scholar 

  • Ng SY, Lee AYW (2019) Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci 13:528

    Article  CAS  Google Scholar 

  • Nguyen HX, Hooshmand MJ, Saiwai H, Maddox J, Salehi A, Lakatos A, Nishi RA, Salazar D, Uchida N, Anderson AJ (2017) Systemic neutrophil depletion modulates the migration and fate of transplanted human neural stem cells to rescue functional repair. J Neurosci 37:9269–9287

    Article  CAS  Google Scholar 

  • Nisbet DR, Rodda AE, Horne MK, Forsythe JS, Finkelstein DI (2009) Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials 30:4573–4580

    Article  CAS  Google Scholar 

  • Nunes MC, Roy NS, Keyoung HM, Goodman RR, McKhann G 2nd, Jiang L, Kang J, Nedergaard M, Goldman SA (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9:439–447

    Article  CAS  Google Scholar 

  • O’Shea TM, Burda JE, Sofroniew MV (2017) Cell biology of spinal cord injury and repair. J Clin Invest 127:3259–3270

    Article  Google Scholar 

  • Park J, Decker JT, Smith DR, Cummings BJ, Anderson AJ, Shea LD (2018) Reducing inflammation through delivery of lentivirus encoding for anti-inflammatory cytokines attenuates neuropathic pain after spinal cord injury. J Control Release 290:88–101

    Article  CAS  Google Scholar 

  • Paskal AM, Paskal W, Pietruski P, Wlodarski PK (2019) Polyethylene glycol: the future of posttraumatic nerve repair? Systemic review. Int J Mol Sci 20:1478

    Article  CAS  Google Scholar 

  • Patel K, Sun D (2016) Strategies targeting endogenous neurogenic cell response to improve recovery following traumatic brain injury. Brain Res 1640:104–113

    Article  CAS  Google Scholar 

  • Pawar K, Prang P, Müller R, Caioni M, Bogdahn U, Kunz W, Weidner N (2015) Intrinsic and extrinsic determinants of central nervous system axon outgrowth into alginate-based anisotropic hydrogels. Acta Biomater 27:131–139

    Article  CAS  Google Scholar 

  • Pearn ML, Niesman IR, Egawa J, Sawada A, Almenar-Queralt A, Shah SB, Duckworth JL, Head BP (2017) Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell Mol Neurobiol 37:571–585

    Article  CAS  Google Scholar 

  • Pearse DD, Bastidas J, Izabel SS, Ghosh M (2018) Schwann cell transplantation subdues the pro-inflammatory innate immune cell response after spinal cord injury. Int J Mol Sci 19:2550

    Article  Google Scholar 

  • Przekora A, Juszkiewicz L (2020) The effect of autologous adipose tissue–derived mesenchymal stem cells’ therapy in the treatment of chronic posttraumatic spinal cord injury in a domestic ferret patient. Cell Transplant 29:0963689720928982

    Article  Google Scholar 

  • Qu C, Xiong Y, Mahmood A, Kaplan DL, Goussev A, Ning R, Chopp M (2009) Treatment of traumatic brain injury in mice with bone marrow stromal cell–impregnated collagen scaffolds. J Neurosurg 111:658–665

    Article  Google Scholar 

  • Rayner M, Brown H, Wilcox M, Phillips J, Quick T (2020) Quantifying regeneration in patients following peripheral nerve injury. J Plast Reconstr Aesthet Surg 73:201–208

    Article  CAS  Google Scholar 

  • Reilly PL (2001) Brain injury: the pathophysiology of the first hours. ‘Talk and Die revisited’. J Clin Neurosci 8:398–403

    Article  CAS  Google Scholar 

  • Reshamwala R (2020) Novel surgical approaches for transplanting three-dimensional constructs of olfactory ensheathing cells to repair the injured spinal cord. PhD, Griffith University

    Google Scholar 

  • Reshamwala R, Shah M, St John J, Ekberg J (2019) Survival and integration of transplanted olfactory ensheathing cells are crucial for spinal cord injury repair: insights from the last 10 years of animal model studies. Cell Transplant 28:132S–159S

    Article  Google Scholar 

  • Reshamwala R, Shah M, Belt L, Ekberg JAK, St John JA (2020) Reliable cell purification and determination of cell purity: crucial aspects of olfactory ensheathing cell transplantation for spinal cord repair. Neural Regen Res 15:2016–2026

    Article  CAS  Google Scholar 

  • Rhea EM, Banks WA (2019) Role of the blood-brain barrier in central nervous system insulin resistance. Front Neurosci 13:521

    Article  Google Scholar 

  • Richardson RM, Holloway KL, Bullock MR, Broaddus WC, Fillmore HL (2006) Isolation of neuronal progenitor cells from the adult human neocortex. Acta Neurochir (Wien) 148:773–777

    Article  CAS  Google Scholar 

  • Riess P, Molcanyi M, Bentz K, Maegele M, Simanski C, Carlitscheck C, Schneider A, Hescheler J, Bouillon B, Schäfer U (2007) Embryonic stem cell transplantation after experimental traumatic brain injury dramatically improves neurological outcome, but may cause tumors. J Neurotrauma 24:216–225

    Article  Google Scholar 

  • Rolfe A, Sun D (2015) Frontiers in neuroengineering stem cell therapy in brain trauma: implications for repair and regeneration of injured brain in experimental TBI models. In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC Press/Taylor & Francis, Boca Raton. © 2015 by Taylor & Francis Group, LLC

    Google Scholar 

  • Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya K, Weber JL, Liang JJ, Moseanko R, Hawbecker S (2018) Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med 24:484–490

    Article  CAS  Google Scholar 

  • Roy NS, Benraiss A, Wang S, Fraser RA, Goodman R, Couldwell WT, Nedergaard M, Kawaguchi A, Okano H, Goldman SA (2000) Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J Neurosci Res 59:321–331

    Article  CAS  Google Scholar 

  • Ryabov S, Zvyagintseva M, Yadgarov MY, Bazanovich S, Smirnov V (2020) Comparison of the efficiency of systemic and local cell therapy with human umbilical cord blood mononuclear cells in rats with severe spinal cord injury. Bull Exp Biol Med 168:552–555

    Article  CAS  Google Scholar 

  • Saremi J, Mahmoodi N, Rasouli M, Ranjbar FE, Mazaheri EL, Akbari M, Hasanzadeh E, Azami M (2021) Advanced approaches to regenerate spinal cord injury: the development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 146:112529

    Article  Google Scholar 

  • Seddon H (1943) Three types of nerve injury. Brain 66:237–288

    Article  Google Scholar 

  • Shah SR, Bindra R, Griffin JW (2010) Irreducible dislocation of the thumb interphalangeal joint with digital nerve interposition: case report. J Hand Surg Am 35:422–424

    Article  Google Scholar 

  • Shakhbazau A, Kawasoe J, Hoyng SA, Kumar R, van Minnen J, Verhaagen J, Midha R (2012) Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair. Mol Cell Neurosci 50:103–112

    Article  CAS  Google Scholar 

  • Shetty AK, Mishra V, Kodali M, Hattiangady B (2014) Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves. Front Cell Neurosci 8:232

    Google Scholar 

  • Shi H, Li X, Yang J, Zhao Y, Xue C, Wang Y, He Q, Shen M, Zhang Q, Yang Y (2019) Bone marrow-derived neural crest precursors improve nerve defect repair partially through secreted trophic factors. Stem Cell Res Ther 10:1–15

    Article  Google Scholar 

  • Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6:393–403

    Article  CAS  Google Scholar 

  • Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57

    Article  Google Scholar 

  • Skardelly M, Gaber K, Burdack S, Scheidt F, Hilbig H, Boltze J, Förschler A, Schwarz S, Schwarz J, Meixensberger J (2011) Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after traumatic brain injury. J Neurotrauma 28:401–414

    Article  Google Scholar 

  • Smith DR, Margul DJ, Dumont CM, Carlson MA, Munsell MK, Johnson M, Cummings BJ, Anderson AJ, Shea LD (2019) Combinatorial lentiviral gene delivery of pro-oligodendrogenic factors for improving myelination of regenerating axons after spinal cord injury. Biotechnol Bioeng 116:155–167

    Article  CAS  Google Scholar 

  • Stenberg L, Kodama A, Lindwall-Blom C, Dahlin LB (2016) Nerve regeneration in chitosan conduits and in autologous nerve grafts in healthy and in type 2 diabetic Goto–Kakizaki rats. Eur J Neurosci 43:463–473

    Article  Google Scholar 

  • Stenberg L, Stößel M, Ronchi G, Geuna S, Yin Y, Mommert S, Mårtensson L, Metzen J, Grothe C, Dahlin LB (2017) Regeneration of long-distance peripheral nerve defects after delayed reconstruction in healthy and diabetic rats is supported by immunomodulatory chitosan nerve guides. BMC Neurosci 18:1–27

    Article  Google Scholar 

  • Steward O, Sharp KG, Yee KM (2014) Long-distance migration and colonization of transplanted neural stem cells. Cell 156:385–387

    Article  CAS  Google Scholar 

  • Stiefel MF, Tomita Y, Marmarou A (2005) Secondary ischemia impairing the restoration of ion homeostasis following traumatic brain injury. J Neurosurg 103:707–714

    Article  Google Scholar 

  • Strandberg EJ, Mozaffar T, Gupta R (2007) The role of neurodiagnostic studies in nerve injuries and other orthopedic disorders. J Hand Surg Am 32:1280–1290

    Article  Google Scholar 

  • Sunderland S (1951) A classification of peripheral nerve injuries producing loss of function. Brain 74:491–516

    Article  CAS  Google Scholar 

  • Tajdaran K, Chan K, Gordon T, Borschel GH (2019) Matrices, scaffolds, and carriers for protein and molecule delivery in peripheral nerve regeneration. Exp Neurol 319:112817

    Article  CAS  Google Scholar 

  • Takahashi H, Yamazaki M, Okawa A, Sakuma T, Kato K, Hashimoto M, Hayashi K, Furuya T, Fujiyoshi T, Kawabe J (2012) Neuroprotective therapy using granulocyte colony-stimulating factor for acute spinal cord injury: a phase I/IIa clinical trial. Eur Spine J 21:2580–2587

    Article  Google Scholar 

  • Taras JS, Jacoby SM, Lincoski CJ (2011) Reconstruction of digital nerves with collagen conduits. J Hand Surg Am 36:1441–1446

    Article  Google Scholar 

  • Tate CC, Shear DA, Tate MC, Archer DR, Stein DG, Laplaca MC (2009) Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med 3:208–217

    Article  CAS  Google Scholar 

  • Taylor D, Gercel-Taylor C (2013) The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids. Front Genet 4:142

    Article  Google Scholar 

  • Tedeschi A, Dupraz S, Laskowski CJ, Xue J, Ulas T, Beyer M, Schultze JL, Bradke F (2016) The calcium channel subunit Alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron 92:419–434

    Article  CAS  Google Scholar 

  • Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR (2010) Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J Cereb Blood Flow Metab 30:1008–1016

    Article  CAS  Google Scholar 

  • Theodore N, Hlubek R, Danielson J, Neff K, Vaickus L, Ulich TR, Ropper AE (2016) First human implantation of a bioresorbable polymer scaffold for acute traumatic spinal cord injury: a clinical pilot study for safety and feasibility. Neurosurgery 79:E305–E312

    Article  Google Scholar 

  • Thomas AM, Seidlits SK, Goodman AG, Kukushliev TV, Hassani DM, Cummings BJ, Anderson AJ, Shea LD (2014) Sonic hedgehog and neurotrophin-3 increase oligodendrocyte numbers and myelination after spinal cord injury. Integr Biol 6:694–705

    Article  CAS  Google Scholar 

  • Torres-Espín A, Hernández J, Navarro X (2013) Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells. PLoS One 8:e76141

    Article  Google Scholar 

  • Tuszynski MH, Wang Y, Graham L, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B (2014) Neural stem cell dissemination after grafting to CNS injury sites. Cell 156:388–389

    Article  CAS  Google Scholar 

  • Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, Stupp SI, Kessler JA (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28:3814–3823

    Article  CAS  Google Scholar 

  • Urabe T, Zhao Q, Danielsen N, Lundborg G (1996) Regeneration across a partial defect in rat sciatic nerve encased in a silicone chamber. Scand J Plast Reconstr Surg Hand Surg 30:7–15

    Article  CAS  Google Scholar 

  • Valenzuela V, Onate M, Hetz C, Court FA (2016) Injury to the nervous system: a look into the ER. Brain Res 1648:617–625

    Article  CAS  Google Scholar 

  • Valls-Sole J, Castillo CD, Casanova-Molla J, Costa J (2011) Clinical consequences of reinnervation disorders after focal peripheral nerve lesions. Clin Neurophysiol 122:219–228

    Article  Google Scholar 

  • Vertex Pharmaceuticals Inc. (2018) Study to assess the efficacy and safety of VX-210 in subjects with acute traumatic cervical spinal cord injury

    Google Scholar 

  • Vespa P (2005) Continuous EEG monitoring for the detection of seizures in traumatic brain injury, infarction, and intracerebral hemorrhage: “to detect and protect”. J Clin Neurophysiol 22:99–106

    Article  Google Scholar 

  • Vespa PM, Nuwer MR, Nenov V, Ronne-Engstrom E, Hovda DA, Bergsneider M, Kelly DF, Martin NA, Becker DP (1999) Increased incidence and impact of nonconvulsive and convulsive seizures after traumatic brain injury as detected by continuous electroencephalographic monitoring. J Neurosurg 91:750–760

    Article  CAS  Google Scholar 

  • Vijayavenkataraman S (2020) Nerve guide conduits for peripheral nerve injury repair: a review on design, materials and fabrication methods. Acta Biomater 106:54–69

    Article  CAS  Google Scholar 

  • Vismara I, Papa S, Rossi F, Forloni G, Veglianese P (2017) Current options for cell therapy in spinal cord injury. Trends Mol Med 23:831–849

    Article  CAS  Google Scholar 

  • Waitayawinyu T, Parisi DM, Miller B, Luria S, Morton HJ, Chin SH, Trumble TE (2007) A comparison of polyglycolic acid versus type 1 collagen bioabsorbable nerve conduits in a rat model: an alternative to autografting. J Hand Surg Am 32:1521–1529

    Article  Google Scholar 

  • Wang Y, Cooke MJ, Morshead CM, Shoichet MS (2012) Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials 33:2681–2692

    Article  CAS  Google Scholar 

  • Wang S, Cheng H, Dai G, Wang X, Hua R, Liu X, Wang P, Chen G, Yue W, An Y (2013) Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Res 1532:76–84

    Article  CAS  Google Scholar 

  • Wang F, Gao ZY, Zhang T, Xu SY, Wang D, Li HP, He XJ (2016) [Study of olfactory ensheathing cells transplantation and treadmill training on improving hindlimb motor function of spinal cord injury rats]. Zhongguo Gu Shang 29:928–938

    Google Scholar 

  • Wang Y, Tan H, Hui X (2018) Biomaterial scaffolds in regenerative therapy of the central nervous system. Biomed Res Int 2018:7848901–7848901

    Google Scholar 

  • Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9

    Article  CAS  Google Scholar 

  • Wilems TS, Pardieck J, Iyer N, Sakiyama-Elbert SE (2015) Combination therapy of stem cell derived neural progenitors and drug delivery of anti-inhibitory molecules for spinal cord injury. Acta Biomater 28:23–32

    Article  CAS  Google Scholar 

  • Windrem MS, Roy NS, Wang J, Nunes M, Benraiss A, Goodman R, McKhann GM 2nd, Goldman SA (2002) Progenitor cells derived from the adult human subcortical white matter disperse and differentiate as oligodendrocytes within demyelinated lesions of the rat brain. J Neurosci Res 69:966–975

    Article  CAS  Google Scholar 

  • Woodhall E, West AK, Chuah MI (2001) Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Mol Brain Res 88:203–213

    Article  CAS  Google Scholar 

  • Xin H, Katakowski M, Wang F, Qian J-Y, Liu XS, Ali MM, Buller B, Zhang ZG, Chopp M (2017) MicroRNA-17–92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats. Stroke 48:747–753

    Article  CAS  Google Scholar 

  • Xiong Y, Mahmood A, Chopp M (2009) Emerging treatments for traumatic brain injury. Expert Opin Emerg Drugs 14:67–84

    Article  CAS  Google Scholar 

  • Xu P, Rosen KM, Hedstrom K, Rey O, Guha S, Hart C, Corfas G (2013) Nerve injury induces glial cell line-derived neurotrophic factor (gdnf) expression in Schwann cells through purinergic signaling and the pkc-pkd pathway. Glia 61:1029–1040

    Article  Google Scholar 

  • Xu B, Zhang Y, Du X-F, Li J, Zi H-X, Bu J-W, Yan Y, Han H, Du J-L (2017) Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res 27:882–897

    Article  CAS  Google Scholar 

  • Yan Y, Ma T, Gong K, Ao Q, Zhang X, Gong Y (2014) Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer’s disease mice. Neural Regen Res 9:798

    Article  CAS  Google Scholar 

  • Yasuhara T, Kameda M, Sasaki T, Tajiri N, Date I (2017) Cell therapy for Parkinson’s disease. Cell Transplant 26:1551–1559

    Article  Google Scholar 

  • Yi S, Xu L, Gu X (2019) Scaffolds for peripheral nerve repair and reconstruction. Exp Neurol 319:112761

    Article  CAS  Google Scholar 

  • Zhang Y, Ang BT, Xiao ZC, Ng I (2009) DNA vaccination against neurite growth inhibitors to enhance functional recovery following traumatic brain injury. In: Steiger HJ (ed) Acta neurochirurgica supplements, 2009//. Springer, Vienna, pp 347–351

    Google Scholar 

  • Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, Xiong Y (2015) Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg 122:856–867

    Article  Google Scholar 

  • Zhang S, Li J, Jiang H, Gao Y, Cheng P, Cao T, Li D, Wang J, Song Y, Liu B (2018) Dorsal root ganglion maintains stemness of bone marrow mesenchymal stem cells by enhancing autophagy through the AMPK/mTOR pathway in a coculture system. Stem Cells Int 2018:8478953

    Article  Google Scholar 

  • Zhu X, Lee J, Wong J, Tan WL, Feng Z, Wang T, Xiao Z, Ng I (2007) Pre-stroke DNA immunization against neurite growth inhibitors is beneficial to the recovery from focal cerebral ischemia in rats. Neural Regen Res 2:513–518

    Article  CAS  Google Scholar 

  • Ziemba AM, Gilbert RJ (2017) Biomaterials for local, controlled drug delivery to the injured spinal cord. Front Pharmacol 8:245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronak Reshamwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reshamwala, R., Shah, M. (2023). Regenerative Approaches in the Nervous System. In: Chakravorty, N., Shukla, P.C. (eds) Regenerative Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-19-6008-6_11

Download citation

Publish with us

Policies and ethics