Abstract
People with hearing disabilities face various communication problems in their environment, both social, workplace, and educational. The World Health Organization reports that more than 360 million people worldwide suffer from hearing problems. The number of certified Mexican Sign Language (MSL) interpreters is low, with approximately 40 in Mexico, which has the consequence of not having access to higher education in this community. This article presents an architecture to translate from Spanish to MSL glossed text. This translation architecture obtained results through various models evaluated with the BLEU, WER, and accuracy metrics, confirming the viability with traditional and computational learning models for sign language translation. Translation with traditional techniques was found to perform better than deep learning. In addition, it was possible to build a corpus of ten sentences written in gloss, validated by a member of the deaf community of MSL.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abiyev, R.H., Arslan, M., Idoko,J.B.: Sign Language Translation using Deep Convolutional Neural Networks. KSII. T. Internet. Info. Syst. 14, 2 (2020).
Martínez-Martin, E., Morillas-Espejo, F.: Deep Learning Techniques for Spanish Sign Language Interpretation. Comput. Intell. Neurosci. 2021(2021).
Kamruzzaman, M.M.: Arabic Sign Language Recognition and Generating Arabic Speech Using Convolutional Neural Network. Wirel. Commun. Mob. Com. 2020 (2020).
Wang, Z., Zhao, T., Ma, J., Chen, H., Liu, K., Shao, H., Wang, Q., Re, J.: Hear Sign Language: A Real-time End-to-End Sign Language Recognition System, In IEEE Transactions on Mobile Computing (2020).
Kahlon, N. K., Singh, W.: Machine translation from text to sign language: a systematic review. Universal Access in the Information Society (2021).
Sahoo, A. K.: Indian Sign Language Recognition Using Machine Learning Techniques. Macromolecular Symposia. 397(1), 2000241 (2021).
Madhubala, M., Krishna, N.V., Mohana, Y., Kalyabi, D., Pranay, M., Krishnam, Ch.: A Tool to Convert Audio/Text to Sign Language Using Python Libraries, Turk. J. Physiother. Rehabil. 32, 2 (2021).
Caballero-Morales, S.O., Trujillo-Romero, F.: 3D Modeling of the Mexican Sign Language for a Speech-to-Sign Language System. Comput. Sist. 17, 593–608 (2013).
Pichardo-Lagunas, O., Martinez-Seis, B.: Resource Creation for Automatic Translation System from Texts in Spanish into Mexican Sign Language. Res. Comput. Sci. 100, 129–137 (2015)
Quinto-Pozos, D.G.: Contact between Mexican Sign Language (MSL) and American Sign Language (ASL) in two Texas border areas. Sign. Lang. Linguist. 7, 215–219 (2006).
Fridman, B.: Categorías verbales de aspecto y tiempo en la Lengua de señas mexicana. Dimensiones del aspecto en español, 189–236 (2005).
García, H., Arango, G.: Mis primeras señas: una introducción al lenguaje manual. México: Secretaría de Educación Pública (1983).
Barraza-Granillo, E., Rose-Gómez, C., González-López, S., Serna-Encinas, M.: Arquitectura Propuesta de un Sistema de Apoyo Educativo para Personas con Discapacidad Auditiva. Avances de investigación en ingeniería, 3, 225–232 (2017).
Padró, L.: Analizadores Multilingües en FreeLing. Linguamatica, 3(2), 13–20 (2011).
Cruz-Aldrete, M.: Gramática de la Lengua de Señas Mexicana (LSM). Sign. Lang. Linguist. 13, 241–252 (2010).
Porta, J.: Towards a Rule-Based Spanish to Spanish Sign Language Translation: From Written Forms to Phonological Representations, [Tesis doctoral, Universidad Autónoma de Madrid]. Comunidad de Madrid Biblos-e Archivo. http://hdl.handle.net/10486/663632 (2014).
An Open Source Neural Network library written in Python, https://keras.io/.
Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU. Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. ACL ’02. (2001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Hernández-Cruz, J.C., Rose-Gómez, C.E., González-López, S. (2022). Translation of Spanish Text to Mexican Sign Language Glossed Text Using Rules and Deep Learning. In: Yang, J., et al. Resilience and Future of Smart Learning. ICSLE 2022. Lecture Notes in Educational Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-5967-7_25
Download citation
DOI: https://doi.org/10.1007/978-981-19-5967-7_25
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-5966-0
Online ISBN: 978-981-19-5967-7
eBook Packages: EducationEducation (R0)