Skip to main content

Deployable and Interchangeable Telescoping Tubes

  • Chapter
  • First Online:
Deployable Multimodal Machine Intelligence

Part of the book series: Lecture Notes in Bioengineering ((LNBE))

  • 418 Accesses

Abstract

Telescoping structures are commonly available in trocar or keyhole procedures, guidewire catheterization procedures and steerable concentric tube robots. We envision a new design involving a combination of hollow foldable concentric tubes for deployability, bistable structures, and tendon-driven mechanisms that allow for more types of movements. The tips can be made replaceable to use in multiple procedures. This design concept can enable an automatic tongue-depressing swab collector to reduce reliance on healthcare workers during the pandemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L (2020)Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet 395

    Google Scholar 

  • Deng B, Chen L, Wei D, Tournat V, Bertoldi K (2020) Pulse-driven robot: motion via solitary waves. Sci Adv 6(18):1–6

    Google Scholar 

  • Donthu N, Gustafsson A (2020) Effects of COVID-19 on business and research. J Bus Res 117:284–289

    Article  Google Scholar 

  • Dupont PE, Lock J, Itkowitz B, Butler E (2010) Design and control of concentric-tube robots. IEEE Trans Robot 26(2):1552–3098

    Article  Google Scholar 

  • Ferreira SdA, Almeida GG, Silva SdO, Vogas GP, Fujiwara RT, Andrade ASRd, Melo MN (2013) Nasal, oral and ear swabs for canine visceral leishmaniasis diagnosis: new practical approaches for detection of Leishmania infantum DNA. PLOS Negl Trop Dis 7(4)

    Google Scholar 

  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 395

    Google Scholar 

  • Jeong HY, An S, Seo IC, Lee E, Ha S, Kim N, Jun YC (2019) 3D printing of twisting and rotational bistable structures with running elements. Sci Rep 9(324)

    Google Scholar 

  • Kuribayashi K, Tsuchiya K, You Z, Tomus D, Umemoto M, Ito T, Sasaki M (2006) Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil. Mater Sci Eng A 419(1–2):131–137

    Article  Google Scholar 

  • Li S, Vogt DM, Rus D, Wood RJ (2017) Fluid-driven origami-inspired artificial muscles. PNAS 114(50):13132–13137

    Article  Google Scholar 

  • Li S, Guo W, Liu H, Wang T, Zhou Y-Y, Yu T, Wang C-Y, Yang Y-M, Zhong N-S, Zhang N-F, Li S-Y (2020) Clinical application of an intelligent oropharyngeal swab robot: implication for the COVID-19 pandemic. Eur Respir J 56(2)

    Google Scholar 

  • Li D, Wang D, Dong J, Wang N, Huang H, Xu H, Xia C (2020) False-negative results of real-time reverse-transcriptase polymerase chain reaction for severe acute respirator syndrome coronavirus 2: role of deep-learning-based CT diagnosis and insights from two cases. Korean J Radiol 21(4):50

    Google Scholar 

  • McKinley W, Parmerlee JK (1973) Bi-stable brake. United States of America Patent 3,741,353, 26 June 1973

    Google Scholar 

  • Nasal Swab Robot Autonomously tests highly infectious diseases safely. Brain Navi (2020) [Online]. https://brainnavi.com/product/nasalswabrobot/. Accessed 23 Sept 2020

  • National Environment Agency (2020) NEA. Toxic waste control. National Environment Agency, 12 Oct 2020 [Online]. https://www.nea.gov.sg/our-services/pollution-control/hazardous-waste/toxic-waste-control. Accessed 15 Nov 2020

  • Palmer MA, Smith WK, Kortenbach JA (2012) Endoscopicsurgical instrument having arotational actuator. United States of America Patent US 8,211,119 B2, 3 July 2012

    Google Scholar 

  • Plooij M, Mathijssen G, Cherelle P, Lefeber D, Vanderborght B (2015) Review of locking devices used in robotics. IEEE Robot Autom Mag 22(1)

    Google Scholar 

  • Rodrigues SP, Horeman T, Dankelman J, Dobbelsteen JvdJ, Jansen F-W (2012) Suturing intraabdominal organs: when do we cause tissue damage? Surg Endosc 26(4):1005–1009

    Google Scholar 

  • Russell K, Sodhi RS (2005a) On the design of slider-crank mechanisms. Part I: multi-phase motion generation. Mech Mach Theory 40:285–299

    Article  MathSciNet  MATH  Google Scholar 

  • Russell K, Sodhi RS (2005b) On the design of slider-crank mechanisms. Part II: multi-phase path and function generation. Mech Mach Theory 40:301–317

    Article  MathSciNet  MATH  Google Scholar 

  • Schioler T, Pellegrino S (2007) Space frames with multiple stable configurations. AIAA J 45:1740–1747

    Article  Google Scholar 

  • Sedal A, Memar AH, Liu T, Mengüç Y, Corson N (2020) Design of deployable soft robots through plastic deformation of Kirigami structures. IEEE Robot Autom Lett 5(2):2377–3766

    Google Scholar 

  • Sogame, Saito J (2001) Deployable structure. United States of America Patent US 6,233,880 B1, 22 May 2001

    Google Scholar 

  • Wang J, Yang X, Li P, Song S, Liu L, Meng MQ-H (2020) Design of a multi-arm concentric-tube robot system for transnasal surgery. Med Biol Eng Compu 58:497–508

    Article  Google Scholar 

  • Zhai Z, Wang Y, Jiang H (2018) Origami-inspired, deployable metamaterials. PNAS 9(115):2032–2037

    Article  Google Scholar 

  • Zhao M, Wang M, Zhang J, Ye J, Xu Y, Wang Z, Ye D, Liu J, Wan J (2020) Advances in the relationship between coronavirus infection and cardiovascular diseases. Biomed Pharmacother 127

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Ren .

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 3594 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hyojin, A., Meng, T., Han, T.Y., Ren, H. (2023). Deployable and Interchangeable Telescoping Tubes. In: Deployable Multimodal Machine Intelligence. Lecture Notes in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-5932-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5932-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5931-8

  • Online ISBN: 978-981-19-5932-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics