Skip to main content

Conservation and Management of Mangrove Ecosystem in Diverse Perspectives

  • Chapter
  • First Online:
Conservation and Sustainable Utilization of Bioresources

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 30))

  • 612 Accesses

Abstract

The mangrove ecosystem is a dynamic hub of the oceanic environment due to nutrient fluidities, yield, and biodiversity of organisms. It guards the seaside zone against natural catastrophes, confirms pollution reduction, and functions by recycling nutrients. The value of mangroves in providing the forestry and fisheries products to meet the shoreline livelihood and economy is significant. Mangroves are of great ecological significance and socioeconomic implication as a core tropical marine habitat. The mangroves are also one of the world’s richest granaries of biological and genetic diversity. They support complex communities where thousands of other species interact, from bacteria to human beings. They provide a valuable nursery habitat for fish and crustaceans, a food source for other faunas. Anthropogenic pressures, development pressures including urbanization and industrialization, and rapid environmental changes have turned tropical and subtropical mangrove forests into one of the Earth’s most-threatened ecosystems, causing worldwide loss of coastal livelihoods and ecosystem services. The scientific community finds such an ecosystem as one among the world’s most-threatened biomes due to human intervention in the long past and on-going climate change. Many countries have already lost their huge mangrove wealth within the last two decades. Further, the decline of the mangrove cover may cause irreparable damage to the ecosystem to the service of mankind. Now is the time to conserve the precious ecosystem for overall well-being based on in situ or ex situ conservation methods preferable to each species; else, the ecosystem services and other benefits offered by mangroves will be diminished or lost forever.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alias S, Zainuddin N, Jones E (2010) Biodiversity of marine fungi in Malaysian mangroves. Bot Mar 53(6):545–554. https://doi.org/10.1515/bot.2010.066

    Article  Google Scholar 

  • Allard S, Costa M, Bulseco A, Helfer V, Wilkins L, Hassenrück C, Zengler K, Zimmer M, Erazo N, Mazza Rodrigues J, Duke N, Melo V, Vanwonterghem I, Junca H, Makonde H, Jiménez D, Tavares T, Fusi M, Daffonchio D, Duarte C, Peixoto R, Rosado A, Gilbert J, Bowman J (2020) Introducing the mangrove microbiome initiative: identifying microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosystems. mSystems 5(5):e00658–e00620. https://doi.org/10.1128/mSystems.00658-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alongi D (1988) Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb Ecol 15(1):59–79. https://doi.org/10.1007/BF02012952

    Article  CAS  PubMed  Google Scholar 

  • Alongi D (1994) The role of bacteria in nutrient recycling in tropical mangrove and other coastal benthic ecosystems. In: Sasekumar A, Marshall N, Macintosh DJ (eds) Ecology and conservation of Southeast Asian marine and freshwater environments including wetlands, developments in hydrobiology, vol 98. Springer, Dordrecht, pp 19–32. https://doi.org/10.1007/978-94-011-0958-1_3

    Chapter  Google Scholar 

  • Alongi D (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29(3):331–349. https://doi.org/10.1017/S0376892902000231

    Article  Google Scholar 

  • Alongi D, Mukhopadhyay S (2015) Contribution of mangroves to coastal carbon cycling in low latitude seas. Agric For Meteorol 213:266–272. https://doi.org/10.1016/j.agrformet.2014.10.005

    Article  Google Scholar 

  • Bano N, Nisa M, Khan N, Saleem M, Harrison P, Ahmed S, Azam F (1997) Significance of bacteria in the flux of organic matter in the tidal creeks of the mangrove ecosystem of the Indus River delta, Pakistan. Mar Ecol Prog Ser 157:1–12. https://doi.org/10.3354/meps157001

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (2002) Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation. Trees 16(2–3):159–166. https://doi.org/10.1007/s00468-001-0152-4

    Article  CAS  Google Scholar 

  • Berkes F (2004) Rethinking community-based conservation. Conserv Biol 18(3):621–630

    Google Scholar 

  • Bindiya ES, Bhat SG (2019) KSBB report on Kerala flood. https://www.keralabiodiversity.org/images/2019/November/Flood_Report/Flood_Impact_Metagenomics_Mangroves_Dr_Bindiya_ES.pdf

  • Castellanos-Galindo G, Kluger L, Camargo M, Cantera J, Mancera Pineda J, Blanco-Libreros J, Wolff M (2021) Mangrove research in Colombia: temporal trends, geographical coverage and research gaps. Estuar Coast Shelf Sci 248:106799

    Google Scholar 

  • Catt B, Erwig A, Hiebert K (2022) Mangroves | mangroves.elaw.org. https://mangroves.elaw.org

  • Chinadaily (2022). https://global.chinadaily.com.cn/a/202108/26/WS61277d36a310efa1bd66b690.html

  • Crisp P (1990) Mangroves in New Zealand: trees in the tide. GP Books

    Google Scholar 

  • Das S, Lyla P, Khan S (2007) Spatial variation of aerobic culturable heterotrophic bacterial population in sediments of the continental slope of western Bay of Bengal. Ind J Marine Sci 36(1):51–58. http://nopr.niscair.res.in/handle/123456789/14

    Google Scholar 

  • de Lange W, De Lange P (1994) An appraisal of factors controlling the latitudinal distribution of mangrove (Avicennia marina var. resinifera) in New Zealand. J Coast Res 10(3):539–548. http://www.jstor.org/stable/4298251

    Google Scholar 

  • Deshmukh S, Balaji V (1994) Conservation of mangrove forest genetic resources. A training manual. https://idl-bnc-idrc.dspacedirect.org/bitstream/handle/10625/33954/118818.pdf?sequence=1

  • Dinerstein E, Olson D, Joshi A, Vynne C, Burgess N, Wikramanayake E, Hahn N, Palminteri S, Hedao P, Noss R, Hansen M (2017) An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67(6):534–545. https://doi.org/10.1093/biosci/bix014

    Article  PubMed  PubMed Central  Google Scholar 

  • Eco-Business (2013). https://www.eco-business.com/news/malaysias-mangrove-forest-rapidly-depleted-and-degraded/

  • Edirisinghe EA, Ariyadasa KP, Chandani RP (2012) Forest cover assessment in Sri Lanka. Sri Lanka Forester 34:1–2

    Google Scholar 

  • FAO (2020) Global forest resources assessment 2020: main report. Rome

    Google Scholar 

  • Friis G, Vizueta J, Smith E, Nelson D, Khraiwesh B, Qudeimat E, Salehi-Ashtiani K, Ortega A, Marshell A, Duarte C, Burt J (2020) A high-quality genome assembly and annotation of the gray mangrove, Avicennia marina. G3 Genes Genomes Genet 11(1):1–7. https://doi.org/10.1093/g3journal/jkaa025

    Article  CAS  Google Scholar 

  • Frith DW, Tantanasiriwong R, Bhatia C (1976) Zonation of macrofauna on a mangrove shore, Phuket Island Thailand. Res Bull Phuket Mar Biol Cent Res Bull 10:1–37

    Google Scholar 

  • Göltenboth F, Schoppe S (2006) 10 - Mangroves. In: Göltenboth F, Timotius KH, Milan PP, Margraf J (eds) Ecology of insular south-east Asia. Elsevier, Amsterdam, pp 187–214

    Google Scholar 

  • Hogarth PJ (2015) The biology of mangroves and seagrasses. Oxford University Press

    Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33(4):265–278. https://doi.org/10.1007/s003740000319

    Article  CAS  Google Scholar 

  • Hoppe-Speer S, Adams J, Rajkaran A (2013) Response of mangroves to drought and non-tidal conditions in St Lucia Estuary, South Africa. Afr J Aquat Sci 38(2):153–162. https://doi.org/10.2989/16085914.2012.759095

    Article  Google Scholar 

  • Horstman E, Lundquist C, Bryan K, Bulmer R, Mullarney J, Stokes D (2018) The dynamics of expanding mangroves in New Zealand. In: Makowski C, Finkl C (eds) Threats to mangrove forests, vol 25. Coastal Research Library, Springer, Cham. https://doi.org/10.1007/978-3-319-73016-5_2

    Chapter  Google Scholar 

  • Iino T, Mori K, Uchino Y, Nakagawa T, Harayama S, Suzuki K (2010) Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. Int J Syst Evol Microbiol 60(6):1376–1382. https://doi.org/10.1099/ijs.0.012484-0

    Article  CAS  PubMed  Google Scholar 

  • IPCC Fourth Assessment Report (2007) The physical science basis, 2:580–595

    Google Scholar 

  • IPCC (2013) Climate Change: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 pp

    Google Scholar 

  • Islam S, Bhuiyan M (2018) Sundarbans mangrove forest of Bangladesh: causes of degradation and sustainable management options. Environ Sustain 1(2):113–131. https://doi.org/10.1007/s42398-018-0018-y

    Article  Google Scholar 

  • Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC, Rivett DW, Salles JF, Van Der Heijden MG (2017) Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J 11(4):853–862. https://doi.org/10.1038/ismej.2016.174

    Article  PubMed  PubMed Central  Google Scholar 

  • Kathiresan K, Bingham B (2001) Biology of mangroves and mangrove Ecosystems. Adv Mar Biol 40:81–251. https://doi.org/10.1016/S0065-2881(01)40003-4

    Article  Google Scholar 

  • Kibria G (2013) Mangrove forests-its role in livelihoods, carbon sinks and disaster mitigation. RMIT University, Melbourne, VIC, Australia, Technical Report, pp 1–17

    Google Scholar 

  • King RJ, Adam P, Kuo J (1990) Seagrasses, mangroves and salt marsh plants. In: Clayton MN, King RJ (eds) Biology of marine plants. Longman Cheshire, Melbourne, pp 213–239

    Google Scholar 

  • Koch F (1998) Biogeography. In: Brown JH, Lomolino MV (eds) Zoosystematics and evolution, 2nd edn. Sinauer Associates, Publishers, p 158

    Google Scholar 

  • Kohlmeyer J, Bebout B, Vlkmann-Kohlmeyer B (1995) Decomposition of mangrove wood by marine fungi and Teredinids in Belize. Mar Ecol 16(1):27–39. https://doi.org/10.1111/j.1439-0485.1995.tb00392.x

    Article  Google Scholar 

  • Kutt A (2007) Bird assemblage in a dune-mangrove mosaic, Cairns, Queensland. Aust Zool 34(2):158–164. https://doi.org/10.7882/AZ.2007.013

    Article  Google Scholar 

  • Luther D, Greenberg R (2009) Mangroves: a global perspective on the evolution and conservation of their terrestrial vertebrates. Bioscience 59(7):602–612. https://doi.org/10.1525/bio.2009.59.7.11

    Article  Google Scholar 

  • Lyimo T, Pol A, Op den Camp H (2002) Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania. AMBIO 31(7):614–616

    PubMed  Google Scholar 

  • Lyimo T, Pol A, Jetten M, Op den Camp H (2009) Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain. FEMS Microbiol Lett 291(2):247–253. https://doi.org/10.1111/j.1574-6968.2008.01464.x

    Article  CAS  PubMed  Google Scholar 

  • Macintosh DJ, Ashton EC (2002) A review of mangrove biodiversity conservation and management. Centre for Tropical Ecosystems Research, University of Aarhus, Denmark. http://mit.biology.au.dk/cenTER/MCB_Files/2002_Review_WB_MCB_Final.pdf

  • Marshall I, Starnawski P, Cupit C, Fernández Cáceres E, Ettema T, Schramm A, Kjeldsen K (2017) The novel bacterial phylum Calditrichaeota is diverse, widespread and abundant in marine sediments and has the capacity to degrade detrital proteins. Environ Microbiol Rep 9(4):397–403. https://doi.org/10.1111/1758-2229.12544

    Article  CAS  PubMed  Google Scholar 

  • Miller JR (2005) Biodiversity conservation and the extinction of experience. Trends Ecol Evol 20(8):430–434. https://doi.org/10.1016/j.tree.2005.05.013

    Article  PubMed  Google Scholar 

  • Mohanraju R, Rajagopal BS, Daniels L, Natarajan R (1997) Isolation and characterization of a methanogenic bacterium from mangrove sediments. J Mar Biotechnol 5(2–3):0147–0152

    Google Scholar 

  • Muraleedharan PK, Swarupanandan K, Anitha V, Ajithkumar C (2009) The conservation of mangroves in Kerala: economic and ecological linkages. Kerala Forest Research Institute, Peechi, pp 8–18

    Google Scholar 

  • Nagelkerken I, Blaber S, Bouillon S, Green P, Haywood M, Kirton LG, Mayenecke JO, Pawlik J, Penrose HM, Sasekumar A, Somerfield PJ (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89(2):155–185

    Google Scholar 

  • Naidoo G (2016) The mangroves of South Africa: an ecophysiological review. S Afr J Bot 107:101–113

    Google Scholar 

  • National Research Council (2011) Advancing the science of climate change. National Academies Press

    Google Scholar 

  • Noske RA (1995) The ecology of mangrove forest birds in Peninsular Malaysia. Ibis 137(2):250–263

    Google Scholar 

  • Noske RA (1996) Abundance, zonation and foraging ecology of birds in mangroves of Darwin Harbour, Northern Territory. Wildlife Res 23(4):443–474

    Google Scholar 

  • Odum WE, Heald EJ (1975) The detritus-based food web of an estuarine research: chemistry, biology, and the estuarine system, vol 1. p 265

    Google Scholar 

  • Pandey C, Hirose, K (2013) International workshop on mangrove conservation in India. In: Proceedings of International Workshop on Mangrove Conservation in India

    Google Scholar 

  • Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M (2020) List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70(11):5607–5561

    PubMed  PubMed Central  Google Scholar 

  • Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V, Chandramohan D (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of leaves of the mangrove Rhizophora apiculata Blume. J Exp Mar Biol Ecol 183(1):113–131

    Google Scholar 

  • Rahardjanto A, Tosiyana VR, Husamah H, Miharja FJ (2020) Diversity of molluscs in the mangrove forest area of Cengkrong Beach-Trenggalek. In: AIP Conference Proceedings 040075-1-040075-7

    Google Scholar 

  • Rahman MM (2016) Ex situ conservation of Rhizophora Mucronata lam. in the Sundarban mangrove forest of Bangladesh. Int J Bus Soc Sci Res 5(1):103–110

    Google Scholar 

  • Reef R, Feller I, Lovelock C (2014) Mammalian herbivores in Australia transport nutrients from terrestrial to marine ecosystems via mangroves. J Trop Ecol 30(3):179–188

    Google Scholar 

  • Rog S, Clarke R, Cook C (2016) More than marine: revealing the critical importance of mangrove ecosystems for terrestrial vertebrates. Divers Distrib 23(2):221–230

    Google Scholar 

  • Rossetto M, Yap J, Lemmon J (2021) A conservation genomics workflow to guide practical management actions. Glob Ecol Conserv 26:1492

    Google Scholar 

  • Sahu SK, Kathiresan K (2012) Molecular markers: an intricate tool for new insights in mangrove genetics. Int J Adv Biotechnol Res 3(8):847–863

    CAS  Google Scholar 

  • Schodde R, Mason IJ, Gill HB (1982) The avifauna of the Australian mangroves: a brief review of composition, structure and origin. In: Proceedings of the Australian National Mangrove Workshop, Australian Institute of Marine Science, Cape Ferguson

    Google Scholar 

  • Schreier BM, Harcourt AH, Coppeto SA, Somi MF (2009) Interspecific competition and niche separation in primates: a global analysis. Biotropica 41:283–291

    Google Scholar 

  • Shackelton S, Campbell BM, Wollenberg E, Edmunds D (2002) Devolution and community-based natural resource management: creating space for local people to participate and benefit? Nat Resour Perspect 76:1–6

    Google Scholar 

  • Shoreit AAM, El-Kady IA, Sayed WF (1992) Isolation and identification of purple non-sulfur bacteria of mangal and non-mangal vegetation of Red Sea Coast, Egypt. Bulletin of the Faculty of Science, Assiut University, Egypt

    Google Scholar 

  • Spalding M (2010) World atlas of mangroves. Routledge

    Google Scholar 

  • Sreekanth PM, Anupama K (2021) Genetic diversity of mangrove tree species Avicennia marina in eco-geographic regions of Kerala coast, Southern India. Ecol Genet Genomics 20:100094

    Google Scholar 

  • Steinke TD (1999) Mangroves in South African estuaries. Estuaries of South Africa. pp 119–140

    Google Scholar 

  • Sundararaju V (2019) Scientific management of mangroves is need of the hour. https://www.downtoearth.org.in/blog/wildlife-biodiversity/scientific-management-of-mangroves-is-need-of-the-hour-64007

  • Tavares TCL, Bezerra WM, Normando LRO, Rosado AS, Melo VMM (2021) Brazilian semi-arid mangroves-associated microbiome as pools of richness and complexity in a changing world. Front Microbiol 26:2485

    Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, London

    Google Scholar 

  • Tong T, Li R, Wu S, Xie S (2019) The distribution of sediment bacterial community in mangroves across China was governed by geographic location and eutrophication. Mar Pollut Bull 140:198–203

    CAS  PubMed  Google Scholar 

  • USFS (2014) West African mangrove ecosystems: developing a basis for a regional perspective. Report compiled by Brooke Czwartacki. https://rmportal.net/library/content/fcmc/publications/mangroves-in-west-africa-a-policy-brief/at_download/file

  • Vanucci M (1989) The mangroves and us: a synthesis of insights. Indian Association for the Advancement of Science, New Delhi

    Google Scholar 

  • Vazquez P, Holguin G, Puente M, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30(5-6):460–468

    CAS  Google Scholar 

  • Vermeij GJ (1973) Molluscs in mangrove swamps: physiognomy, diversity, and regional differences. Syst Zool 22(4):609–624

    Google Scholar 

  • Ward RD, de Lacerda LD (2021) Responses of mangrove ecosystems to sea level change. In: Dynamic sedimentary environments of mangrove coasts. Elsevier, pp 235–253

    Google Scholar 

  • Ward CJ, Steinke TD (1982) A note on the distribution and approximate areas of mangroves in South Africa. S Afr J Bot 1(3):51–53

    Google Scholar 

  • Ward R, Friess D, Day R (2016) Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosyst Health Sustain 2(4):01211

    Google Scholar 

  • Wee AKS, Mori GM, Lira CF, Núñez-Farfán J, Takayama K, Faulks L, Shi S, Tsuda Y, Suyama Y, Yamamoto T, Iwasaki T, Nagano Y, Wang Z, Watanabe S, Kajita T (2019) The integration and application of genomic information in mangrove conservation. Conserv Biol 33(1):206–209

    PubMed  Google Scholar 

  • Wiens JJ, Graham CH, Moen DS, Smith SA, Reeder TW (2006) Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. Am Nat 168:579–596

    PubMed  Google Scholar 

  • World Atlas (2020). https://www.worldatlas.com/forests/mangrove-forest.html

  • Zaradic PA, Pergams OR, Kareiva P (2009) The impact of nature experience on willingness to support conservation. PLoS One 4(10):7367

    Google Scholar 

  • Zuberer D, Silver W (1978) Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Appl Environ Microbiol 35(3):567–575

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bindiya, E.S., Sreekanth, P.M., Bhat, S.G. (2023). Conservation and Management of Mangrove Ecosystem in Diverse Perspectives. In: Sukumaran, S.T., T R, K. (eds) Conservation and Sustainable Utilization of Bioresources. Sustainable Development and Biodiversity, vol 30. Springer, Singapore. https://doi.org/10.1007/978-981-19-5841-0_13

Download citation

Publish with us

Policies and ethics