Skip to main content

Cytopenias Post Stem Cell Transplant

  • Chapter
  • First Online:
Basics of Hematopoietic Stem Cell Transplant
  • 418 Accesses

Abstract

One of the complications encountered after stem cell transplant (SCT) is the development of cytopenias, which can involve single lineage or multiple lineages. These cytopenias can be transient or long-lasting and increase the risks of morbidity and mortality. There can be multiple reasons for the development of cytopenias post-SCT. The common causes are drugs, infections particularly viral, development of new-onset autoimmunity, poor graft function and graft failure. Other causes include ABO incompatibility induced pure red cell aplasia, thrombotic thrombocytopenic purpura, hemophagocytosis, and post-transplant lymphoproliferative disorders. The patient should be evaluated for the above-mentioned causes. Treatment is directed to the cause and may vary from avoiding particular drugs or treatment of infection to CD34 stem cell booster and second SCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dzierzak E, Speck NA. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol. 2008;9(2):129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Forman SJ, Negrin RS, Antin JH, Appelbaum FR. Thomas’ hematopoietic cell transplantation: stem cell transplantation. Hoboken: Wiley; 2015.

    Book  Google Scholar 

  3. Montesinos P, Gascón A, Martínez-Cuadrón D, Senent ML, Cordón L, Sanz J, et al. Significance of increased blastic-appearing cells in bone marrow following myeloablative unrelated cord blood transplantation in adult patients. Biol Blood Marrow Transplant. 2012;18(3):388–95.

    Article  PubMed  Google Scholar 

  4. Arranz L. The hematology of tomorrow is here—preclinical models are not: cell therapy for hematological malignancies. Cancer. 2022;14(3):580. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833715/.

    Article  CAS  Google Scholar 

  5. Cao X, Wu X, Frassica D, Yu B, Pang L, Xian L, et al. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci U S A. 2011;108(4):1609–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4(1–2):7–25.

    CAS  PubMed  Google Scholar 

  7. Yu VWC, Scadden DT. Hematopoietic stem cell and its bone marrow niche. Curr Top Dev Biol. 2016;118:21–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Man Y, Yao X, Yang T, Wang Y. Hematopoietic stem cell niche during homeostasis, malignancy, and bone marrow transplantation. Front Cell Dev Biol. 2021;9:621214. https://doi.org/10.3389/fcell.2021.621214.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shen H, Yu H, Liang PH, Cheng H, XuFeng R, Yuan Y, et al. An acute negative bystander effect of γ-irradiated recipients on transplanted hematopoietic stem cells. Blood. 2012;119(15):3629–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun YQ, He GL, Chang YJ, Xu LP, Zhang XH, Han W, et al. The incidence, risk factors, and outcomes of primary poor graft function after unmanipulated haploidentical stem cell transplantation. Ann Hematol. 2015;94(10):1699–705.

    Article  CAS  PubMed  Google Scholar 

  11. Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, et al. Bone marrow niches in haematological malignancies. Nat Rev Cancer. 2020;20(5):285–98.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yin X, Hu L, Zhang Y, Zhu C, Cheng H, Xie X, et al. PDGFB-expressing mesenchymal stem cells improve human hematopoietic stem cell engraftment in immunodeficient mice. Bone Marrow Transplant. 2020;55(6):1029–40.

    Article  CAS  PubMed  Google Scholar 

  13. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124(2):407–21.

    Article  CAS  PubMed  Google Scholar 

  14. Peci F, Dekker L, Pagliaro A, van Boxtel R, Nierkens S, Belderbos M. The cellular composition and function of the bone marrow niche after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2022;57:1357–64.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Liu F, Poursine-Laurent J, Link DC. Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood. 2000;95(10):3025–31.

    Article  CAS  PubMed  Google Scholar 

  16. Chow A, Lucas D, Hidalgo A, Méndez-Ferrer S, Hashimoto D, Scheiermann C, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med. 2011;208(2):261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bonig H, Papayannopoulou T. Mobilization of hematopoietic stem/progenitor cells: general principles and molecular mechanisms. Methods Mol Biol. 2012;904:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakamae H, Storer B, Sandmaier BM, Maloney DG, Davis C, Corey L, et al. Cytopenias after day 28 in allogeneic hematopoietic cell transplantation: impact of recipient/donor factors, transplant conditions and myelotoxic drugs. Haematologica. 2011;96(12):1838–45.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharma SK. What a clinical hematologist should know about T cells? Int Blood Res Rev. 2020;11:20–32.

    Article  Google Scholar 

  20. Sharma SK. What a clinical hematologist should know about B cells? Intern Blood Res Rev. 2022;13(1):8–22.

    Article  CAS  Google Scholar 

  21. Storek J, Geddes M, Khan F, Huard B, Helg C, Chalandon Y, et al. Reconstitution of the immune system after hematopoietic stem cell transplantation in humans. In: Seminars in immunopathology. Cham: Springer; 2008. p. 425.

    Google Scholar 

  22. van den Brink MR, Velardi E, Perales MA. Immune reconstitution following stem cell transplantation. ASH Educ Program Book. 2015;2015(1):215–9.

    Google Scholar 

  23. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med. 1995;332(3):143–9.

    Article  CAS  PubMed  Google Scholar 

  24. Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current concepts and advances in graft-versus-host disease immunology. Annu Rev Immunol. 2021;39:19–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koyama M, Mukhopadhyay P, Schuster IS, Henden AS, Hülsdünker J, Varelias A, et al. MHC class II antigen presentation by the intestinal epithelium initiates graft-versus-host disease and is influenced by the microbiota. Immunity. 2019;51(5):885–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koyama M, Kuns RD, Olver SD, Raffelt NC, Wilson YA, Don ALJ, et al. Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease. Nat Med. 2012;18(1):135–42.

    Article  CAS  Google Scholar 

  27. Batts ED, Lazarus HM. Diagnosis and treatment of transplantation-associated thrombotic microangiopathy: real progress or are we still waiting? Bone Marrow Transplant. 2007;40(8):709.

    Article  CAS  PubMed  Google Scholar 

  28. Eid AJ, Brown RA, Patel R, Razonable RR. Parvovirus B19 infection after transplantation: a review of 98 cases. Clin Infect Dis. 2006;43(1):40–8.

    Article  PubMed  Google Scholar 

  29. Hirokawa M, Fukuda T, Ohashi K, Hidaka M, Ichinohe T, Iwato K, et al. Efficacy and long-term outcome of treatment for pure red cell aplasia after allogeneic stem cell transplantation from major ABO-incompatible donors. Biol Blood Marrow Transplant. 2013;19(7):1026–32.

    Article  PubMed  Google Scholar 

  30. Li Z, Rubinstein SM, Thota R, Savani M, Brissot E, Shaw BE, et al. Immune-mediated complications after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22(8):1368–75.

    Article  CAS  PubMed  Google Scholar 

  31. Bento L, Canaro M, Bastida JM, Sampol A. Thrombocytopenia and therapeutic strategies after allogeneic hematopoietic stem cell transplantation. J Clin Med. 2022;11(5):1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dominietto A, Raiola AM, van Lint MT, Lamparelli T, Gualandi F, Berisso G, et al. Factors influencing haematological recovery after allogeneic haemopoietic stem cell transplants: graft-versus-host disease, donor type, cytomegalovirus infections and cell dose. Br J Haematol. 2001;112(1):219–27.

    Article  CAS  PubMed  Google Scholar 

  33. Bruno B, Gooley T, Sullivan KM, Davis C, Bensinger WI, Storb R, et al. Secondary failure of platelet recovery after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2001;7(3):154–62.

    Article  CAS  PubMed  Google Scholar 

  34. Weaver CH, Potz J, Redmond J, Tauer K, Schwartzberg LS, Kaywin P, et al. Engraftment and outcomes of patients receiving myeloablative therapy followed by autologous peripheral blood stem cells with a low CD34+ cell content. Bone Marrow Transplant. 1997;19(11):1103–10.

    Article  CAS  PubMed  Google Scholar 

  35. Stockerl-Goldstein KE, Reddy SA, Horning SF, Blume KG, Chao NF, Hu WW, et al. Favorable treatment outcome in non-Hodgkin’s lymphoma patients with “poor” mobilization of peripheral blood progenitor cells. Biol Blood Marrow Transplant. 2000;6(5):506–12.

    Article  CAS  PubMed  Google Scholar 

  36. Wolff SN. Second hematopoietic stem cell transplantation for the treatment of graft failure, graft rejection or relapse after allogeneic transplantation. Bone Marrow Transplant. 2002;29(7):545.

    Article  CAS  PubMed  Google Scholar 

  37. Mattsson J, Ringdén O, Storb R. Graft failure after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2008;14(1):165–70.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Storb R, Prentice RL, Thomas ED, Appelbaum FR, Deeg HJ, Doney K, et al. Factors associated with graft rejection after HLA-identical marrow transplantation for aplastic anaemia. Br J Haematol. 1983;55(4):573–85.

    Article  CAS  PubMed  Google Scholar 

  39. Wulff JC, Santner TJ, Storb R, Banaji M, Buckner CD, Clift R, et al. Transfusion requirements after HLA-identical marrow transplantation in 82 patients with aplastic anemia. Vox Sang. 1983;44(6):366–74.

    Article  CAS  PubMed  Google Scholar 

  40. Baron F, Little MT, Storb R. Kinetics of engraftment following allogeneic hematopoietic cell transplantation with reduced-intensity or nonmyeloablative conditioning. Blood Rev. 2005;19(3):153–64.

    Article  PubMed  Google Scholar 

  41. Olsson R, Remberger M, Schaffer M, Berggren DM, Svahn BM, Mattsson J, et al. Graft failure in the modern era of allogeneic hematopoietic SCT. Bone Marrow Transplant. 2013;48(4):537–43.

    Article  CAS  PubMed  Google Scholar 

  42. Locatelli F, Lucarelli B, Merli P. Current and future approaches to treat graft failure after allogeneic hematopoietic stem cell transplantation. Expert Opin Pharmacother. 2014;15(1):23–36.

    Article  CAS  PubMed  Google Scholar 

  43. Larocca A, Piaggio G, Podestà M, Pitto A, Bruno B, Di Grazia C, et al. Boost of CD34+-selected peripheral blood cells without further conditioning in patients with poor graft function following allogeneic stem cell transplantation. Haematologica. 2006;91(7):935–40.

    PubMed  Google Scholar 

  44. Shahzad M, Siddiqui RS, Anwar I, Chaudhary SG, Ali T, Naseem M, et al. Outcomes with CD34-selected stem cell boost for poor graft function after allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. Transplant Cell Ther. 2021;27(10):877.e1–8.

    Article  CAS  PubMed  Google Scholar 

  45. Man Y, Lu Z, Yao X, Gong Y, Yang T, Wang Y. Recent advancements in poor graft function following hematopoietic stem cell transplantation. Front Immunol. 2022;13:911174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stasia A, Ghiso A, Galaverna F, Raiola AM, Gualandi F, Luchetti S, et al. CD34 selected cells for the treatment of poor graft function after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(9):1440–3.

    Article  CAS  PubMed  Google Scholar 

  47. Arfons LM, Tomblyn M, Rocha V, Lazarus HM. Second hematopoietic stem cell transplantation in myeloid malignancies. Curr Opin Hematol. 2009;16(2):112–23.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shaw BE, Mufti GJ, Mackinnon S, Cavenagh JD, Pearce RM, Towlson KE, et al. Outcome of second allogeneic transplants using reduced-intensity conditioning following relapse of haematological malignancy after an initial allogeneic transplant. Bone Marrow Transplant. 2008;42(12):783–9.

    Article  CAS  PubMed  Google Scholar 

  49. Savani BN, Mielke S, Reddy N, Goodman S, Jagasia M, Rezvani K. Management of relapse after allo-SCT for AML and the role of second transplantation. Bone Marrow Transplant. 2009;44(12):769–77.

    Article  CAS  PubMed  Google Scholar 

  50. Kishi K, Takahashi S, Gondo H, Shiobara S, Kanamaru A, Kato S, et al. Second allogeneic bone marrow transplantation for post-transplant leukemia relapse: results of a survey of 66 cases in 24 Japanese institutes. Bone Marrow Transplant. 1997;19(5):461–6.

    Article  CAS  PubMed  Google Scholar 

  51. Maciej Zaucha J, Mielcarek M, Takatu A, Little MT, Gooley T, Baker J, et al. Engraftment of early erythroid progenitors is not delayed after non-myeloablative major ABO-incompatible haematopoietic stem cell transplantation. Br J Haematol. 2002;119(3):740–50.

    Article  CAS  PubMed  Google Scholar 

  52. Griffith LM, McCoy JP, Bolan CD, Stroncek DF, Pickett AC, Linton GF, et al. Persistence of recipient plasma cells and anti-donor isohaemagglutinins in patients with delayed donor erythropoiesis after major ABO incompatible non-myeloablative haematopoietic cell transplantation. Br J Haematol. 2005;128(5):668–75.

    Article  CAS  PubMed  Google Scholar 

  53. Maruyama K, Aotsuka N, Kumano Y, Sato N, Kawashima N, Onda Y, et al. Immune-mediated hematopoietic failure after allogeneic hematopoietic stem cell transplantation: a common cause of late graft failure in patients with complete donor chimerism. Biol Blood Marrow Transplant. 2018;24(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  54. Remberger M, Ringden O, Ljungman P, Hägglund H, Winiarski J, Lönnqvist B, et al. Booster marrow or blood cells for graft failure after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1998;22(1):73.

    Article  CAS  PubMed  Google Scholar 

  55. Antin JH, Childs R, Filipovich AH, Giralt S, Mackinnon S, Spitzer T, et al. Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: recommendations from a workshop at the 2001 Tandem Meetings of the International Bone Marrow Transplant Registry and the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2001;7(9):473–85.

    Article  CAS  PubMed  Google Scholar 

  56. Kernan NA, Bordignon C, Heller G, Cunningham I, Castro-Malaspina H, Shank B, et al. Graft failure after T-cell-depleted human leukocyte antigen identical marrow transplants for leukemia: I. Analysis of risk factors and results of secondary transplants. Blood. 1989;74(6):2227–36.

    Article  CAS  PubMed  Google Scholar 

  57. Greenberger JS, Krensky AM, Messner H, Burakoff SJ, Wandl U, Sakakeeny MA. Production of colony-stimulating factor(s) for granulocyte-macrophage and multipotential (granulocyte/erythroid/megakaryocyte/macrophage) hematopoietic progenitor cells (CFU-GEMM) by clonal lines of human IL-2-dependent T-lymphocytes. Exp Hematol. 1984;12(9):720–7.

    CAS  PubMed  Google Scholar 

  58. Jiang Z, Adams GB, Hanash AM, Scadden DT, Levy RB. The contribution of cytotoxic and noncytotoxic function by donor T-cells that support engraftment after allogeneic bone marrow transplantation. Biol Blood Marrow Transplant. 2002;8(11):588–96.

    Article  PubMed  Google Scholar 

  59. Cudkowicz G, Bennett M. Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by resistant F 1 hybrid mice. J Exp Med. 1971;134(6):1513–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kamminga LM, van Os R, Ausema A, Noach EJK, Weersing E, Dontje B, et al. Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging. Stem Cells. 2005;23(1):82–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S.K. (2023). Cytopenias Post Stem Cell Transplant. In: Basics of Hematopoietic Stem Cell Transplant. Springer, Singapore. https://doi.org/10.1007/978-981-19-5802-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5802-1_53

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5801-4

  • Online ISBN: 978-981-19-5802-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics