Skip to main content

Immune Reconstitution Following Stem Cell Transplant

  • Chapter
  • First Online:
Basics of Hematopoietic Stem Cell Transplant
  • 461 Accesses

Abstract

Immune reconstitution refers to the recovery of different immune cells post stem cell transplant (SCT). It is important for immune system to reconstitute following SCT because impaired or delayed immune system is associated with increased risk of infections, autoimmune manifestations, graft-versus-host disease (GVHD) and increased risk of relapse of hematological malignancies. For a transplant physician It is important to understand the mechanisms involved in the T cell recovery after SCT as these T cells are involved both in favorable (fighting infection and mediating GVL effect) and unfavorable (GVHD, autoimmunity) effects of transplant. T cell recovery post SCT is depends upon combined effect of the multiple factors. Following SCT, the thymus is subjected to damage by the conditioning regimens, corticosteroids, and post transplant immunosuppressive agents, leading to its impaired function. The methods to induce immunologic tolerance to a foreign antigen are based on the same principles that are involved in the tolerance to self-antigens. Immunosuppressive agents are used to suppress autoreactive, allo-aggressive, or hyper-inflammatory T cells. To regain the capability of responding to millions of environmental antigens post SCT the T cell compartment has to diversify enormously for which both thymic-dependent and thymic-independent pathways are needed. Immune reconstitution can be measured by monitoring the activity of cells of innate and adaptive immunity. Aging affects both T cells and B cells. This chapter highlights the basic questions which a transplant physician faces regarding the mechanisms behind the immune reconstitution after SCT. A thorough knowledge of T and B cell development is necessary to understand the principles of immune reconstitution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams KM, Gress RE. Immune reconstitution and implications for immunotherapy following haematopoietic stem cell transplantation. Best Pract Res Clin Haematol. 2008;21(3):579–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Warrington R, Watson W, Kim HL, Antonetti FR. An introduction to immunology and immunopathology. Allergy, Asthma Clin Immunol. 2011;7(1):S1.

    Article  PubMed  Google Scholar 

  3. Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: naïve to memory and everything in between. Adv Physiol Educ. 2013;37(4):273–83.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hayward AR. The human fetus and newborn: development of the immune response. Birth Defects Orig Artic Ser. 1983;19(3):289–94.

    CAS  PubMed  Google Scholar 

  5. Dowling DJ, Levy O. Ontogeny of early life immunity. Trends Immunol. 2014;35(7):299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;12(6):509–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009;9(3):185–94.

    Article  CAS  PubMed  Google Scholar 

  8. Henneke P, Kierdorf K, Hall LJ, Sperandio M, Hornef M. Perinatal development of innate immune topology. elife. 2021;10:e67793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jain N. The early life education of the immune system: moms, microbes and (missed) opportunities. Gut Microbes. 2020;12(1):1824564.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mold JE, Venkatasubrahmanyam S, Burt TD, Michaëlsson J, Rivera JM, Galkina SA, et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science. 2010;330(6011):1695–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ogonek J, Kralj Juric M, Ghimire S, Varanasi PR, Holler E, Greinix H, et al. Immune reconstitution after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2016;7:507.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shresta S, Pham CT, Thomas DA, Graubert TA, Ley TJ. How do cytotoxic lymphocytes kill their targets? Curr Opin Immunol. 1998;10(5):581–7.

    Article  CAS  PubMed  Google Scholar 

  13. Woodland DL, Kohlmeier JE. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat Rev Immunol. 2009;9(3):153–61.

    Article  CAS  PubMed  Google Scholar 

  14. Lakkis FG, Sayegh MH. Memory T cells: a hurdle to immunologic tolerance. J Am Soc Nephrol. 2003;14(9):2402–10.

    Article  PubMed  Google Scholar 

  15. Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 2004;21(4):589–601.

    Article  CAS  PubMed  Google Scholar 

  16. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097–100.

    Article  CAS  PubMed  Google Scholar 

  17. Sharma SK. What a clinical hematologist should know about T cells? Int Blood Res Rev. 2020;11:20–32.

    Article  Google Scholar 

  18. Six A, Mariotti-Ferrandiz E, Chaara W, Magadan S, Pham HP, Lefranc MP, et al. The past, present, and future of immune repertoire biology – the rise of next-generation repertoire analysis. Front Immunol. 2013;4:413. https://www.frontiersin.org/article/10.3389/fimmu.2013.00413. Accessed 1 May 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu X, Wu J. History, applications, and challenges of immune repertoire research. Cell Biol Toxicol. 2018;34(6):441–57.

    Article  CAS  PubMed  Google Scholar 

  20. Mora T, Walczak AM. How many different clonotypes do immune repertoires contain? Curr Opin Syst Biol. 2019;18:104–10.

    Article  Google Scholar 

  21. Laydon DJ, Bangham CRM, Asquith B. Estimating T-cell repertoire diversity: limitations of classical estimators and a new approach. Philos Trans R Soc B Biol Sci. 2015;370(1675):20140291.

    Article  Google Scholar 

  22. Chaudhry MS, Velardi E, Malard F, van den Brink MRM. Immune reconstitution after allogeneic hematopoietic stem cell transplantation: time to T up the thymus. J Immunol. 2017;198(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  23. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med. 1995;332(3):143–9.

    Article  CAS  PubMed  Google Scholar 

  24. van den Brink MRM, Velardi E, Perales MA. Immune reconstitution following stem cell transplantation. Hematology. 2015;2015(1):215–9.

    Article  PubMed  Google Scholar 

  25. Mohty B, Mohty M. Long-term complications and side effects after allogeneic hematopoietic stem cell transplantation: an update. Blood Cancer J. 2011;1(4):e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hakim FT, Gress RE. Reconstitution of thymic function after stem cell transplantation in humans. Curr Opin Hematol. 2002;9(6):490–6.

    Article  PubMed  Google Scholar 

  27. Krenger W, Blazar BR, Holländer GA. Thymic T-cell development in allogeneic stem cell transplantation. Blood. 2011;117(25):6768–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Charlton B, Auchincloss H, Fathman CG. Mechanisms of transplantation tolerance. Annu Rev Immunol. 1994;12(1):707–34.

    Article  CAS  PubMed  Google Scholar 

  29. Fletcher AL, Lowen TE, Sakkal S, Reiseger JJ, Hammett MV, Seach N, et al. Ablation and regeneration of tolerance-inducing medullary thymic epithelial cells after cyclosporine, cyclophosphamide, and dexamethasone treatment. J Immunol. 2009;183(2):823–31.

    Article  CAS  PubMed  Google Scholar 

  30. Cooke KR, Luznik L, Sarantopoulos S, Hakim FT, Jagasia M, Fowler DH, et al. The biology of chronic graft-versus-host disease: a task force report from the National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease. Biol Blood Marrow Transplant. 2017;23(2):211–34.

    Article  PubMed  Google Scholar 

  31. Dulude G, Roy DC, Perreault C. The effect of graft-versus-host disease on T cell production and homeostasis. J Exp Med. 1999;189(8):1329–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fukushi N, Arase H, Wang B, Ogasawara K, Gotohda T, Good RA, et al. Thymus: a direct target tissue in graft-versus-host reaction after allogeneic bone marrow transplantation that results in abrogation of induction of self-tolerance. Proc Natl Acad Sci U S A. 1990;87(16):6301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghayur T, Seemayer TA, Xenocostas A, Lapp WS. Complete sequential regeneration of graft-vs.-host-induced severely dysplastic thymuses. Implications for the pathogenesis of chronic graft-vs.-host disease. Am J Pathol. 1988;133(1):39–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fallen PR, McGreavey L, Madrigal JA, Potter M, Ethell M, Prentice HG, et al. Factors affecting reconstitution of the T cell compartment in allogeneic haematopoietic cell transplant recipients. Bone Marrow Transplant. 2003;32(10):1001–14.

    Article  CAS  PubMed  Google Scholar 

  35. Kanda J, Chiou LW, Szabolcs P, Sempowski GD, Rizzieri DA, Long GD, et al. Immune recovery in adult patients following myeloablative dual umbilical unrelated donor hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2012;18(11):1664–1676.e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lewin SR, Heller G, Zhang L, Rodrigues E, Skulsky E, van den Brink MRM, et al. Direct evidence for new T-cell generation by patients after either T-cell-depleted or unmodified allogeneic hematopoietic stem cell transplantations. Blood. 2002;100(6):2235–42.

    Article  CAS  PubMed  Google Scholar 

  37. Velardi E, Tsai JJ, van den Brink MRM. T cell regeneration after immunological injury. Nat Rev Immunol. 2020;21:277.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shono Y, Ueha S, Wang Y, Abe J, Kurachi M, Matsuno Y, et al. Bone marrow graft-versus-host disease: early destruction of hematopoietic niche after MHC-mismatched hematopoietic stem cell transplantation. Blood. 2010;115(26):5401–11.

    Article  CAS  PubMed  Google Scholar 

  39. Gaballa A, Sundin M, Stikvoort A, Abumaree M, Uzunel M, Sairafi D, et al. T Cell Receptor Excision Circle (TREC) monitoring after allogeneic stem cell transplantation; a predictive marker for complications and clinical outcome. Int J Mol Sci. 2016;17(10):1705. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5085737/. Accessed 18 Aug 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Toubert A, Glauzy S, Douay C, Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens. 2012;79(2):83–9.

    Article  CAS  PubMed  Google Scholar 

  41. Mackall CL. T-cell immunodeficiency following cytotoxic antineoplastic therapy: a review. Stem Cells. 2000;18(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  42. Michie CA, McLean A, Alcock C, Beverley PC. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature. 1992;360(6401):264–5.

    Article  CAS  PubMed  Google Scholar 

  43. Chaudhry MS, Velardi E, Dudakov JA, van den Brink MRM. Thymus: the next (re)generation. Immunol Rev. 2016;271(1):56–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Urdahl KB, Pardoll DM, Jenkins MK. Cyclosporin A inhibits positive selection and delays negative selection in alpha beta TCR transgenic mice. J Immunol. 1994;152(6):2853–9.

    Article  CAS  PubMed  Google Scholar 

  45. Mackall CL, Bare CV, Granger LA, Sharrow SO, Titus JA, Gress RE. Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing. J Immunol. 1996;156(12):4609–16.

    Article  CAS  PubMed  Google Scholar 

  46. Hauri-Hohl MM, Keller MP, Gill J, Hafen K, Pachlatko E, Boulay T, et al. Donor T-cell alloreactivity against host thymic epithelium limits T-cell development after bone marrow transplantation. Blood. 2007;109(9):4080–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moutuou MM, Pagé G, Zaid I, Lesage S, Guimond M. Restoring T cell homeostasis after allogeneic stem cell transplantation; Principal limitations and future challenges. Front Immunol. 2018;9:1237. https://www.frontiersin.org/articles/10.3389/fimmu.2018.01237/full. Accessed 7 Sep 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dertschnig S, Hauri-Hohl MM, Vollmer M, Holländer GA, Krenger W. Impaired thymic expression of tissue-restricted antigens licenses the de novo generation of autoreactive CD4+ T cells in acute GVHD. Blood. 2015;125(17):2720–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van den Brink MR, Moore E, Ferrara JL, Burakoff SJ. Graft-versus-host-disease-associated thymic damage results in the appearance of T cell clones with anti-host reactivity. Transplantation. 2000;69(3):446–9.

    Article  PubMed  Google Scholar 

  50. Wu T, Young JS, Johnston H, Ni X, Deng R, Racine J, et al. Thymic damage, impaired negative selection, and development of chronic graft-versus-host disease caused by donor CD4+ and CD8+ T cells. J Immunol. 2013;191(1):488–99.

    Article  CAS  PubMed  Google Scholar 

  51. Ljungman P, Cordonnier C, de Bock R, Einsele H, Engelhard D, Grundy J, et al. Immunisations after bone marrow transplantation: results of a European survey and recommendations from the infectious diseases working party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 1995;15(3):455–60.

    CAS  PubMed  Google Scholar 

  52. Roux E, Dumont-Girard F, Starobinski M, Siegrist CA, Helg C, Chapuis B, et al. Recovery of immune reactivity after T-cell-depleted bone marrow transplantation depends on thymic activity. Blood. 2000;96(6):2299–303.

    Article  CAS  PubMed  Google Scholar 

  53. Ringhoffer S, Rojewski M, Döhner H, Bunjes D, Ringhoffer M. T-cell reconstitution after allogeneic stem cell transplantation: assessment by measurement of the sjTREC/βTREC ratio and thymic naive T cells. Haematologica. 2013;98(10):1600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Small TN. Immunologic reconstitution following stem cell transplantation. Curr Opin Hematol. 1996;3(6):461–5.

    Article  CAS  PubMed  Google Scholar 

  55. Jiang Y, Wan LP, Qin YW, Wang XR, Yan SK, Xie KC, et al. Chimerism status is correlated to acute graft-versus-host disease after allogeneic stem cell transplantation. Int J Hematol. 2014;99(3):323–8.

    Article  CAS  PubMed  Google Scholar 

  56. Kong Y, Li Y, Zhang W, Yuan S, Winkler R, Kröhnert U, et al. Sepsis-induced thymic atrophy is associated with defects in early lymphopoiesis. Stem Cells. 2016;34(12):2902–15.

    Article  CAS  PubMed  Google Scholar 

  57. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GMA, Papagno L, et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med. 2002;8(4):379–85.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou G, Levitsky H. Towards curative cancer immunotherapy: overcoming posttherapy tumor escape. Clin Dev Immunol. 2012;2012:124187. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3386616/. Accessed 13 Sep 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Alatrash G, Molldrem JJ. Vaccines as consolidation therapy for myeloid leukemia. Expert Rev Hematol. 2011;4(1):37–50.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yong ASM, Keyvanfar K, Eniafe R, Savani BN, Rezvani K, Sloand EM, et al. Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukemia-associated antigens: implications for the graft-versus-leukemia effect and peptide vaccine-based immunotherapy. Leukemia. 2008;22(9):1721–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yotnda P, Firat H, Garcia-Pons F, Garcia Z, Gourru G, Vernant JP, et al. Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J Clin Invest. 1998;101(10):2290–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    Article  CAS  PubMed  Google Scholar 

  63. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331(6024):1565–70.

    Article  CAS  PubMed  Google Scholar 

  64. Boudreau JE, Hsu KC. Natural killer cell education and the response to infection and cancer therapy: stay tuned. Trends Immunol. 2018;39(3):222–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiménez M, Martínez C, Ercilla G, Carreras E, Urbano-Ispízua A, Aymerich M, et al. Reduced-intensity conditioning regimen preserves thymic function in the early period after hematopoietic stem cell transplantation. Exp Hematol. 2005;33(10):1240–8.

    Article  PubMed  Google Scholar 

  66. Prelog M, Keller M, Geiger R, Brandstätter A, Würzner R, Schweigmann U, et al. Thymectomy in early childhood: significant alterations of the CD4(+)CD45RA(+)CD62L(+) T cell compartment in later life. Clin Immunol. 2009;130(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  67. Appay V, Sauce D, Prelog M. The role of the thymus in immunosenescence: lessons from the study of thymectomized individuals. Aging. 2010;2(2):78–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tian G, Li M, Lv G. Analysis of T-cell receptor repertoire in transplantation: fingerprint of T cell-mediated alloresponse. Front Immunol. 2021;12:778559.

    Article  CAS  PubMed  Google Scholar 

  69. Harris AE, Styczynski J, Bodge M, Mohty M, Savani BN, Ljungman P. Pretransplant vaccinations in allogeneic stem cell transplantation donors and recipients: an often-missed opportunity for immunoprotection? Bone Marrow Transplant. 2015;50(7):899.

    Article  CAS  PubMed  Google Scholar 

  70. Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2013;58(3):e44–100.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S.K. (2023). Immune Reconstitution Following Stem Cell Transplant. In: Basics of Hematopoietic Stem Cell Transplant. Springer, Singapore. https://doi.org/10.1007/978-981-19-5802-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5802-1_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5801-4

  • Online ISBN: 978-981-19-5802-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics