Skip to main content

Stem Cell Transplant for Hemoglobinopathies

  • Chapter
  • First Online:
Basics of Hematopoietic Stem Cell Transplant
  • 437 Accesses

Abstract

Hemoglobinopathies include all genetic diseases leading to abnormal hemoglobin production. Thalassemia and sickle cell disease (SCD) are the two most common hemoglobinopathies worldwide. Patients with thalassemia major present within 6–9 months of life with severe anemia, and if not treated with regular blood transfusions, die within the first 2 years. Allogeneic stem cell transplant (allo SCT) is the definitive cure for thalassemia major and should be considered early in the disease course. Myeloablative conditioning (MAC) is the most preferred regimen for hemoglobinopathies. Busulfan is an alkylating agent which has high specificity for the most primitive precursors of the myeloid–erythroid axis. Allo SCT can cure sickle cell disease patients, with a cure rate of 85% for sibling matched sibling donor (MSD) SCT in children with age less than 16 years. MAC is the most commonly used regimen for SCD transplants, but this can result in toxicities such as growth impairment, gonadal hypofunction, and sterility. In contrast, reduced intensity conditioning (RIC) regimens are associated with a more favorable toxicity profile but can be associated with higher rates of graft rejection. However, given the similar survival rates and tolerability of a RIC/NMA approach, a less toxic approach may be preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Risoluti R, Colah R, Materazzi S. Editorial: Frontiers in hemoglobinopathies: new insights and methods. Front Mol Biosci. 2021;8:632916.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schrier SL. Pathophysiology of thalassemia. Curr Opin Hematol. 2002;9(2):123–6.

    Article  PubMed  Google Scholar 

  3. Gabutti V, Piga A. Results of long-term iron-chelating therapy. Acta Haematol. 1996;95(1):26–36.

    Article  CAS  PubMed  Google Scholar 

  4. Taher AT, Cappellini MD. How I manage medical complications of β-thalassemia in adults. Blood. 2018;132(17):1781–91.

    Article  CAS  PubMed  Google Scholar 

  5. Thakerngpol K, Fucharoen S, Boonyaphipat P, Srisook K, Sahaphong S, Vathanophas V, et al. Liver injury due to iron overload in thalassemia: histopathologic and ultrastructural studies. Biometals. 1996;9(2):177–83.

    Article  CAS  PubMed  Google Scholar 

  6. Piomelli S, Hart D, Graziano J, Grant G, Karpatkin M, McCarthy K. Current strategies in the management of Cooley’s anemia. Ann N Y Acad Sci. 1985;445:256–67.

    Article  CAS  PubMed  Google Scholar 

  7. Cianciulli P. Iron chelation therapy in thalassemia syndromes. Mediterr J Hematol Infect Dis. 2009;1(1):e2009034.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cappellini MD, Viprakasit V, Taher AT, Georgiev P, Kuo KHM, Coates T, et al. A phase 3 trial of luspatercept in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2020;382(13):1219–31.

    Article  CAS  PubMed  Google Scholar 

  9. Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2018;378(16):1479–93.

    Article  CAS  PubMed  Google Scholar 

  10. Forman SJ, Negrin RS, Antin JH, Appelbaum FR. Thomas’ hematopoietic cell transplantation: stem cell transplantation. New York, NY: John Wiley & Sons; 2015.

    Book  Google Scholar 

  11. La Nasa G, Caocci G, Efficace F, Dessì C, Vacca A, Piras E, et al. Long-term health-related quality of life evaluated more than 20 years after hematopoietic stem cell transplantation for thalassemia. Blood. 2013;122(13):2262–70.

    Article  PubMed  Google Scholar 

  12. Angelucci E. Hematopoietic stem cell transplantation in thalassemia. Hematology. 2010;2010(1):456–62.

    Article  PubMed  Google Scholar 

  13. Lucarelli G, Giardini C, Baronciani D. Bone marrow transplantation in thalassemia. Semin Hematol. 1995;32(4):297–303.

    CAS  PubMed  Google Scholar 

  14. Mathews V, Savani BN. Conditioning regimens in allo-SCT for thalassemia major. Bone Marrow Transplant. 2014;49(5):607–10.

    Article  CAS  PubMed  Google Scholar 

  15. Gaziev D, Polchi P, Galimberti M, Angelucci E, Giardini C, Baronciani D, et al. Graft-versus-host disease after bone marrow transplantation for thalassemia: an analysis of incidence and risk factors. Transplantation. 1997;63(6):854–60.

    Article  CAS  PubMed  Google Scholar 

  16. Nesci S, Manna M, Lucarelli G, Tonucci P, Donati M, Buffi O, et al. Mixed chimerism after bone marrow transplantation in thalassemia. Ann N Y Acad Sci. 1998;850:495–7.

    Article  CAS  PubMed  Google Scholar 

  17. Kassim AA, Sharma D. Hematopoietic stem cell transplantation for sickle cell disease: the changing landscape. Hematol Oncol Stem Cell Ther. 2017;10(4):259–66.

    Article  PubMed  Google Scholar 

  18. Lucarelli G, Galimberti M, Delfini C, Agostinelli F, Giorgi C, Giardini C, et al. Marrow transplantation for thalassemia following busulphan and cyclophosphamide. Lancet. 1985;325(8442):1355–7.

    Article  Google Scholar 

  19. Mulas O, Mola B, Caocci G, La Nasa G. Conditioning regimens in patients with β-thalassemia who underwent hematopoietic stem cell transplantation: a scoping review. J Clin Med. 2022;11(4):907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Korula A, Pn N, Devasia A, Lakshmi KM, Abraham A, Sindhuvi E, et al. Second hematopoietic stem cell transplant for thalassemia major: improved clinical outcomes with a treosulfan-based conditioning regimen. Biol Blood Marrow Transplant. 2018;24(1):103–8.

    Article  PubMed  Google Scholar 

  21. Lüftinger R, Zubarovskaya N, Galimard JE, Cseh A, Salzer E, Locatelli F, et al. Busulfan-fludarabine- or treosulfan-fludarabine-based myeloablative conditioning for children with thalassemia major. Ann Hematol. 2022;101:655.

    Article  PubMed  Google Scholar 

  22. Danylesko I, Shimoni A, Nagler A. Treosulfan-based conditioning before hematopoietic SCT: more than a BU look-alike. Bone Marrow Transplant. 2012;47(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  23. Mathews V, George B, Viswabandya A, Abraham A, Ahmed R, Ganapule A, et al. Improved clinical outcomes of high risk β thalassemia major patients undergoing a HLA matched related allogeneic stem cell transplant with a treosulfan based conditioning regimen and peripheral blood stem cell grafts. PLoS One. 2013;8(4):e61637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Storb R, Weiden PL, Graham TC, Lerner KG, Nelson N, Thomas ED. Hemopoietic grafts between DLA-identical canine littermates following dimethyl myleran. Evidence for resistance to grafts not associated with DLA and abrogated by antithymocyte serum. Transplantation. 1977;24(5):349–57.

    Article  CAS  PubMed  Google Scholar 

  25. Kastan MB, Schlaffer E, Russo JE, Colvin OM, Civin CI, Hilton J. Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood. 1990;75(10):1947–50.

    Article  CAS  PubMed  Google Scholar 

  26. Lucarelli G, Clift RA, Galimberti M, Polchi P, Angelucci E, Baronciani D, et al. Marrow transplantation for patients with thalassemia: results in class 3 patients. Blood. 1996;87(5):2082–8.

    Article  CAS  PubMed  Google Scholar 

  27. Sodani P, Gaziev D, Polchi P, Erer B, Giardini C, Angelucci E, et al. New approach for bone marrow transplantation in patients with class 3 thalassemia aged younger than 17 years. Blood. 2004;104(4):1201–3.

    Article  CAS  PubMed  Google Scholar 

  28. Rosales F, Peylan-Ramu N, Cividalli G, Varadi G, Or R, Naparstek E, et al. The role of thiotepa in allogeneic bone marrow transplantation for genetic diseases. Bone Marrow Transplant. 1999;23(9):861–5.

    Article  CAS  PubMed  Google Scholar 

  29. Sauer M, Bettoni C, Lauten M, Ghosh A, Rehe K, Grigull L, et al. Complete substitution of cyclophosphamide by fludarabine and ATG in a busulfan-based preparative regimen for children and adolescents with beta-thalassemia. Bone Marrow Transplant. 2005;36(5):383–7.

    Article  CAS  PubMed  Google Scholar 

  30. Iannone R, Casella JF, Fuchs EJ, Chen AR, Jones RJ, Woolfrey A, et al. Results of minimally toxic nonmyeloablative transplantation in patients with sickle cell anemia and beta-thalassemia. Biol Blood Marrow Transplant. 2003;9(8):519–28.

    Article  PubMed  Google Scholar 

  31. King AA, Kamani N, Bunin N, Sahdev I, Brochstein J, Hayashi RJ, et al. Successful matched sibling donor marrow transplantation following reduced intensity conditioning in children with hemoglobinopathies. Am J Hematol. 2015;90(12):1093–8.

    Article  CAS  PubMed  Google Scholar 

  32. La Nasa G, Littera R, Locatelli F, Lai S, Alba F, Caocci G, et al. The human leucocyte antigen-G 14-basepair polymorphism correlates with graft-versus-host disease in unrelated bone marrow transplantation for thalassaemia. Br J Haematol. 2007;139(2):284–8.

    Article  PubMed  Google Scholar 

  33. Li C, Wu X, Feng X, He Y, Liu H, Pei F, et al. A novel conditioning regimen improves outcomes in β-thalassemia major patients using unrelated donor peripheral blood stem cell transplantation. Blood. 2012;120(19):3875–81.

    Article  CAS  PubMed  Google Scholar 

  34. Bernardo ME, Zecca M, Piras E, Vacca A, Giorgiani G, Cugno C, et al. Treosulfan-based conditioning regimen for allogeneic haematopoietic stem cell transplantation in patients with thalassaemia major. Br J Haematol. 2008;143(4):548–51.

    PubMed  Google Scholar 

  35. Strocchio L, Zecca M, Comoli P, Mina T, Giorgiani G, Giraldi E, et al. Treosulfan-based conditioning regimen for allogeneic haematopoietic stem cell transplantation in children with sickle cell disease. Br J Haematol. 2015;169(5):726–36.

    Article  CAS  PubMed  Google Scholar 

  36. Klein OR, Bonfim C, Abraham A, Ruggeri A, Purtill D, Cohen S, et al. Transplant for non-malignant disorders: an International Society for Cell & Gene Therapy Stem Cell Engineering Committee report on the role of alternative donors, stem cell sources and graft engineering. Cytotherapy. 2023;25:463.

    Article  CAS  PubMed  Google Scholar 

  37. Anurathapan U, Pakakasama S, Rujkijyanont P, Sirachainan N, Songdej D, Chuansumrit A, et al. Pharmacologic immunoablation followed by reduced-toxicity conditioning and stem cell transplantation in high-risk thalassemia: a safe approach to disease control. Biol Blood Marrow Transplant. 2013;19(8):1259–62.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bolaños-Meade J, Fuchs EJ, Luznik L, Lanzkron SM, Gamper CJ, Jones RJ, et al. HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood. 2012;120(22):4285–91.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Limerick E, Fitzhugh C. Choice of donor source and conditioning regimen for hematopoietic stem cell transplantation in sickle cell disease. J Clin Med. 2019;8(11):1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grosso D, Carabasi M, Filicko-O’Hara J, Kasner M, Wagner JL, Colombe B, et al. A 2-step approach to myeloablative haploidentical stem cell transplantation: a phase 1/2 trial performed with optimized T-cell dosing. Blood. 2011;118(17):4732–9.

    Article  CAS  PubMed  Google Scholar 

  41. Bolaños-Meade J, Cooke KR, Gamper CJ, Ali SA, Ambinder RF, Borrello IM, et al. Effect of increased dose of total body irradiation on graft failure associated with HLA-haploidentical transplantation in patients with severe haemoglobinopathies: a prospective clinical trial. Lancet Haematol. 2019;6(4):e183–93.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kharya G, Bakane A, Agarwal S, Rauthan A. Pre-transplant myeloid and immune suppression, upfront plerixafor mobilization and post-transplant cyclophosphamide: novel strategy for haploidentical transplant in sickle cell disease. Bone Marrow Transplant. 2021;56(2):492–504.

    Article  CAS  PubMed  Google Scholar 

  43. Lucarelli G, Galimberti M, Giardini C, Polchi P, Angelucci E, Baronciani D, et al. Bone marrow transplantation in thalassemia. The experience of Pesaro. Ann N Y Acad Sci. 1998;850:270–5.

    Article  CAS  PubMed  Google Scholar 

  44. Lawson SE, Roberts IAG, Amrolia P, Dokal I, Szydlo R, Darbyshire PJ. Bone marrow transplantation for beta-thalassaemia major: the UK experience in two paediatric centres. Br J Haematol. 2003;120(2):289–95.

    Article  PubMed  Google Scholar 

  45. La Nasa G, Argiolu F, Giardini C, Pession A, Fagioli F, Caocci G, et al. Unrelated bone marrow transplantation for beta-thalassemia patients: the experience of the Italian Bone Marrow Transplant Group. Ann N Y Acad Sci. 2005;1054:186–95.

    Article  PubMed  Google Scholar 

  46. Chandy M, Balasubramanian P, Ramachandran SV, Mathews V, George B, Dennison D, et al. Randomized trial of two different conditioning regimens for bone marrow transplantation in thalassemia – the role of busulfan pharmacokinetics in determining outcome. Bone Marrow Transplant. 2005;36(10):839–45.

    Article  CAS  PubMed  Google Scholar 

  47. Hongeng S, Pakakasama S, Chuansumrit A, Sirachainan N, Kitpoka P, Udomsubpayakul U, et al. Outcomes of transplantation with related- and unrelated-donor stem cells in children with severe thalassemia. Biol Blood Marrow Transplant. 2006;12(6):683–7.

    Article  PubMed  Google Scholar 

  48. Bernardo ME, Piras E, Vacca A, Giorgiani G, Zecca M, Bertaina A, et al. Allogeneic hematopoietic stem cell transplantation in thalassemia major: results of a reduced-toxicity conditioning regimen based on the use of treosulfan. Blood. 2012;120(2):473–6.

    Article  CAS  PubMed  Google Scholar 

  49. Ramzi M, Nourani H, Zakerinia M, Dehghani M, Vojdani R, Haghshenas M. Results of hematopoietic stem cell transplant in Shiraz: 15 years experience in southern Iran. Exp Clin Transplant. 2010;8(1):61–5.

    PubMed  Google Scholar 

  50. Jaing TH, Hung IJ, Yang CP, Chen SH, Chung HT, Tsay PK, et al. Unrelated cord blood transplantation for thalassaemia: a single-institution experience of 35 patients. Bone Marrow Transplant. 2012;47(1):33–9.

    Article  PubMed  Google Scholar 

  51. Anurathapan U, Hongeng S, Pakakasama S, Sirachainan N, Songdej D, Chuansumrit A, et al. Hematopoietic stem cell transplantation for homozygous β-thalassemia and β-thalassemia/hemoglobin E patients from haploidentical donors. Bone Marrow Transplant. 2016;51(6):813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Choudhary D, Doval D, Sharma SK, Khandelwal V, Setia R, Handoo A. Allogenic hematopoietic cell transplantation in thalassemia major: a single-center retrospective analysis from India. J Pediatr Hematol Oncol. 2019;41(5):e296–301.

    Article  PubMed  Google Scholar 

  53. Patel DA, Akinsete AM, de la Fuente J, Kassim AA. Haploidentical bone marrow transplant with posttransplant cyclophosphamide for sickle cell disease: an update. Hematol Oncol Stem Cell Ther. 2020;13(2):91–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mathews V, George B, Deotare U, Lakshmi KM, Viswabandya A, Daniel D, et al. A new stratification strategy that identifies a subset of class III patients with an adverse prognosis among children with beta thalassemia major undergoing a matched related allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2007;13(8):889–94.

    Article  PubMed  Google Scholar 

  55. Gaziev D, Polchi P, Lucarelli G, Galimberti M, Sodani P, Angelucci E, et al. Second marrow transplants for graft failure in patients with thalassemia. Bone Marrow Transplant. 1999;24(12):1299–306.

    Article  CAS  PubMed  Google Scholar 

  56. Srivastava A, Shaji RV. Cure for thalassemia major - from allogeneic hematopoietic stem cell transplantation to gene therapy. Haematologica. 2017;102(2):214–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bhatia M, Jin Z, Baker C, Geyer MB, Radhakrishnan K, Morris E, et al. Reduced toxicity, myeloablative conditioning with BU, fludarabine, alemtuzumab and SCT from sibling donors in children with sickle cell disease. Bone Marrow Transplant. 2014;49(7):913–20.

    Article  CAS  PubMed  Google Scholar 

  58. Galambrun C, Pondarré C, Bertrand Y, Loundou A, Bordigoni P, Frange P, et al. French multicenter 22-year experience in stem cell transplantation for beta-thalassemia major: lessons and future directions. Biol Blood Marrow Transplant. 2013;19(1):62–8.

    Article  PubMed  Google Scholar 

  59. Hsieh MM, Fitzhugh CD, Weitzel RP, Link ME, Coles WA, Zhao X, et al. Nonmyeloablative HLA-matched sibling allogeneic hematopoietic stem cell transplantation for severe sickle cell phenotype. JAMA. 2014;312(1):48–56.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Powles RL, Morgenstern GR, Kay HE, McElwain TJ, Clink HM, Dady PJ, et al. Mismatched family donors for bone-marrow transplantation as treatment for acute leukaemia. Lancet Lond Engl. 1983;1(8325):612–5.

    Article  CAS  Google Scholar 

  61. Oevermann L, Schulte JH, Hundsdörfer P, Hakimeh D, Kogel F, Lang P, et al. HLA-haploidentical hematopoietic stem cell transplantation in pediatric patients with hemoglobinopathies: current practice and new approaches. Bone Marrow Transplant. 2019;54(2):743–8.

    Article  PubMed  Google Scholar 

  62. Ciurea SO, Mulanovich V, Saliba RM, Bayraktar UD, Jiang Y, Bassett R, et al. Improved early outcomes using a T cell replete graft compared with T cell depleted haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2012;18(12):1835–44.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Khan MA, Bashir Q, Chaudhry QN, Ahmed P, Satti TM, Mahmood SK. Review of haploidentical hematopoietic cell transplantation. J Glob Oncol. 2018;4:1–13.

    PubMed  Google Scholar 

  64. Anurathapan U, Hongeng S, Pakakasama S, Songdej D, Sirachainan N, Pongphitcha P, et al. Hematopoietic stem cell transplantation for severe thalassemia patients from haploidentical donors using a novel conditioning regimen. Biol Blood Marrow Transplant. 2020;26(6):1106–12.

    Article  CAS  PubMed  Google Scholar 

  65. Vellaichamy Swaminathan V, Ravichandran N, Ramanan KM, Meena SK, Varla H, Ramakrishnan B, et al. Augmented immunosuppression and PTCY-based haploidentical hematopoietic stem cell transplantation for thalassemia major. Pediatr Transplant. 2021;25(2):e13893.

    Article  CAS  PubMed  Google Scholar 

  66. Hong X, Chen Y, Lu J, Lu Q. Addition of ruxolitinib in Graft-versus-host disease prophylaxis for pediatric β-thalassemia major patients after allogeneic stem cell transplantation: a retrospective cohort study. Pediatr Transplant. 2023;27(2):e14466.

    Article  CAS  PubMed  Google Scholar 

  67. Lucarelli G, Angelucci E, Giardini C, Baronciani D, Galimberti M, Polchi P, et al. Fate of iron stores in thalassaemia after bone-marrow transplantation. Lancet. 1993;342(8884):1388–91.

    Article  CAS  PubMed  Google Scholar 

  68. Bozzola M, Giorgiani G, Locatelli F, Cisternino M, Gambarana D, Zecca M, et al. Growth in children after bone marrow transplantation. Horm Res. 1993;39(3–4):122–6.

    Article  CAS  PubMed  Google Scholar 

  69. Taher A, Vichinsky E, Musallam K, Cappellini MD, Viprakasit V. In: Weatherall D, editor. Guidelines for the management of non transfusion dependent thalassaemia (NTDT). Nicosia: Thalassaemia International Federation; 2013. http://www.ncbi.nlm.nih.gov/books/NBK190453/. Accessed 17 Jul 2022.

    Google Scholar 

  70. Ben Salah N, Bou-Fakhredin R, Mellouli F, Taher AT. Revisiting beta thalassemia intermedia: past, present, and future prospects. Hematol Amst Neth. 2017;22(10):607–16.

    CAS  Google Scholar 

  71. Rivella S. The role of ineffective erythropoiesis in non-transfusion-dependent thalassemia. Blood Rev. 2012;26(Suppl 1):S12–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Asadov C, Alimirzoeva Z, Mammadova T, Aliyeva G, Gafarova S, Mammadov J. β-Thalassemia intermedia: a comprehensive overview and novel approaches. Int J Hematol. 2018;108(1):5–21.

    Article  CAS  PubMed  Google Scholar 

  73. Galanello R, Cao A. Relationship between genotype and phenotype. Thalassemia intermedia. Ann N Y Acad Sci. 1998;850:325–33.

    Article  CAS  PubMed  Google Scholar 

  74. Weatherall DJ. Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet. 2001;2(4):245–55.

    Article  CAS  PubMed  Google Scholar 

  75. Thein SL. Genetic insights into the clinical diversity of beta thalassaemia. Br J Haematol. 2004;124(3):264–74.

    Article  CAS  PubMed  Google Scholar 

  76. Taher AT, Musallam KM, Cappellini MD, Weatherall DJ. Optimal management of β thalassaemia intermedia. Br J Haematol. 2011;152(5):512–23.

    Article  CAS  PubMed  Google Scholar 

  77. Bender MA, Douthitt Seibel G. Sickle cell disease. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJ, et al., editors. GeneReviews(®). Seattle, WA: University of Washington; 1993. Internet, updated 2014.

    Google Scholar 

  78. Rees DC, Robinson S, Howard J. How I manage red cell transfusions in patients with sickle cell disease. Br J Haematol. 2018;180(4):607–17.

    Article  PubMed  Google Scholar 

  79. Odièvre MH, Verger E, Silva-Pinto AC, Elion J. Pathophysiological insights in sickle cell disease. Indian J Med Res. 2011;134:532–7.

    PubMed  PubMed Central  Google Scholar 

  80. Lee GR, Wintrobe MM. Wintrobe’s clinical hematology, vol. 2. Philadelphia, PA: Lea & Febiger; 1993.

    Google Scholar 

  81. Ogedegbe HO. Sickle cell disease: an overview. Lab Med. 2002;33(7):515–43.

    Article  Google Scholar 

  82. Naik RP, Haywood C. Sickle cell trait diagnosis: clinical and social implications. ASH Educ Program Book. 2015;2015(1):160–7.

    Google Scholar 

  83. Zhang D, Xu C, Manwani D, Frenette PS. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood. 2016;127(7):801–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Merciris P, Giraud F. How do sickle cells become dehydrated? Hematol J. 2001;2(3):200–5.

    Article  CAS  PubMed  Google Scholar 

  85. Edelstein SJ, Telford JN, Crepeau RH. Structure of fibers of sickle cell hemoglobin. Proc Natl Acad Sci U S A. 1973;70(4):1104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kean LS, Brown LE, Nichols JW, Mohandas N, Archer DR, Hsu LL. Comparison of mechanisms of anemia in mice with sickle cell disease and beta-thalassemia: peripheral destruction, ineffective erythropoiesis, and phospholipid scramblase-mediated phosphatidylserine exposure. Exp Hematol. 2002;30(5):394–402.

    Article  CAS  PubMed  Google Scholar 

  87. Nickel RS, Seashore E, Lane PA, Alazraki AL, Horan JT, Bhatia M, et al. Improved splenic function after hematopoietic stem cell transplant for sickle cell disease. Pediatr Blood Cancer. 2016;63(5):908–13.

    Article  PubMed  Google Scholar 

  88. Darbari DS, Kple-Faget P, Kwagyan J, Rana S, Gordeuk VR, Castro O. Circumstances of death in adult sickle cell disease patients. Am J Hematol. 2006;81(11):858–63.

    Article  PubMed  Google Scholar 

  89. Steinberg MH, McCarthy WF, Castro O, Ballas SK, Armstrong FD, Smith W, et al. The risks and benefits of long-term use of hydroxyurea in sickle cell anemia: a 17.5 year follow-up. Am J Hematol. 2010;85(6):403–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Davis BA, Allard S, Qureshi A, Porter JB, Pancham S, Win N, et al. Guidelines on red cell transfusion in sickle cell disease Part II: indications for transfusion. Br J Haematol. 2017;176(2):192–209.

    Article  PubMed  Google Scholar 

  91. Kuo KHM, Ward R, Kaya B, Howard J, Telfer P. A comparison of chronic manual and automated red blood cell exchange transfusion in sickle cell disease patients. Br J Haematol. 2015;170(3):425–8.

    Article  PubMed  Google Scholar 

  92. Sarode R, Ballas SK, Garcia A, Kim HC, King K, Sachais B, et al. Red blood cell exchange: 2015 American Society for Apheresis consensus conference on the management of patients with sickle cell disease. J Clin Apher. 2017;35:342.

    Article  Google Scholar 

  93. Oshrine B, Talano JA. Curative treatment for severe sickle cell disease: allogeneic transplantation. Clin Adv Hematol Oncol. 2015;13(4):249–56.

    PubMed  Google Scholar 

  94. Angelucci E, Matthes-Martin S, Baronciani D, Bernaudin F, Bonanomi S, Cappellini MD, et al. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica. 2014;99(5):811–20.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hsieh MM, Fitzhugh CD, Tisdale JF. Allogeneic hematopoietic stem cell transplantation for sickle cell disease: the time is now. Blood. 2011;118(5):1197–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shenoy S. Hematopoietic stem-cell transplantation for sickle cell disease: current evidence and opinions. Ther Adv Hematol. 2013;4(5):335–44.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Johnson FL, Look AT, Gockerman J, Ruggiero MR, Dalla-Pozza L, Billings FT. Bone-marrow transplantation in a patient with sickle-cell anemia. N Engl J Med. 1984;311(12):780–3.

    Article  CAS  PubMed  Google Scholar 

  98. Thomas ED, Buckner CD, Sanders JE, Papayannopoulou T, Borgna-Pignatti C, De Stefano P, et al. Marrow transplantation for thalassaemia. Lancet Lond Engl. 1982;2(8292):227–9.

    Article  CAS  Google Scholar 

  99. Walters MC, Patience M, Leisenring W, Eckman JR, Scott JP, Mentzer WC, et al. Bone marrow transplantation for sickle cell disease. N Engl J Med. 1996;335(6):369–76.

    Article  CAS  PubMed  Google Scholar 

  100. Bernaudin F, Socie G, Kuentz M, Chevret S, Duval M, Bertrand Y, et al. Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease. Blood. 2007;110(7):2749–56.

    Article  CAS  PubMed  Google Scholar 

  101. Walters MC, Patience M, Leisenring W, Rogers ZR, Aquino VM, Buchanan GR, et al. Stable mixed hematopoietic chimerism after bone marrow transplantation for sickle cell anemia. Biol Blood Marrow Transplant. 2001;7(12):665–73.

    Article  CAS  PubMed  Google Scholar 

  102. Pawlowska AB, Cheng JC, Karras NA, Sun W, Wang LD, Bell AD, et al. HLA haploidentical stem cell transplant with pretransplant immunosuppression for patients with sickle cell disease. Biol Blood Marrow Transplant. 2018;24(1):185–9.

    Article  PubMed  Google Scholar 

  103. Bernaudin F. Why, who, when, and how? Rationale for considering allogeneic stem cell transplantation in children with sickle cell disease. J Clin Med. 2019;8(10):1523.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Shenoy S, Eapen M, Panepinto JA, Logan BR, Wu J, Abraham A, et al. A trial of unrelated donor marrow transplantation for children with severe sickle cell disease. Blood. 2016;128(21):2561–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kröger N, Solano C, Wolschke C, Bandini G, Patriarca F, Pini M, et al. Antilymphocyte globulin for prevention of chronic graft-versus-host disease. N Engl J Med. 2016;374(1):43–53.

    Article  PubMed  Google Scholar 

  106. Ozdogu H, Boga C, Yeral M, Kozanoglu I, Gereklioglu C, Aytan P, et al. Allogenic peripheral stem cell transplantation from HLA-matched related donors for adult sickle cell disease: remarkable outcomes from a single-center trial. Bone Marrow Transplant. 2018;53(7):880–90.

    Article  CAS  PubMed  Google Scholar 

  107. Krishnamurti L, Kharbanda S, Biernacki MA, Zhang W, Baker KS, Wagner JE, et al. Stable long-term donor engraftment following reduced-intensity hematopoietic cell transplantation for sickle cell disease. Biol Blood Marrow Transplant. 2008;14(11):1270–8.

    Article  PubMed  Google Scholar 

  108. Matthes-Martin S, Lawitschka A, Fritsch G, Lion T, Grimm B, Breuer S, et al. Stem cell transplantation after reduced-intensity conditioning for sickle cell disease. Eur J Haematol. 2013;90(4):308–12.

    Article  PubMed  Google Scholar 

  109. Horwitz ME, Spasojevic I, Morris A, Telen M, Essell J, Gasparetto C, et al. Fludarabine-based nonmyeloablative stem cell transplantation for sickle cell disease with and without renal failure: clinical outcome and pharmacokinetics. Biol Blood Marrow Transplant. 2007;13(12):1422–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. King A, Shenoy S. Evidence-based focused review of the status of hematopoietic stem cell transplantation as treatment of sickle cell disease and thalassemia. Blood. 2014;123(20):3089–94; quiz 3210.

    Article  CAS  PubMed  Google Scholar 

  111. Bernaudin F, Dalle JH, Bories D, de Latour RP, Robin M, Bertrand Y, et al. Long-term event-free survival, chimerism and fertility outcomes in 234 patients with sickle-cell anemia younger than 30 years after myeloablative conditioning and matched-sibling transplantation in France. Haematologica. 2020;105(1):91–101.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Fitzhugh CD, Cordes S, Taylor T, Coles W, Roskom K, Link M, et al. At least 20% donor myeloid chimerism is necessary to reverse the sickle phenotype after allogeneic HSCT. Blood. 2017;130(17):1946–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kanter J, Liem RI, Bernaudin F, Bolaños-Meade J, Fitzhugh CD, Hankins JS, et al. American Society of Hematology 2021 guidelines for sickle cell disease: stem cell transplantation. Blood Adv. 2021;5(18):3668–89.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Saraf SL, Rondelli D. Allogeneic hematopoietic stem cell transplantation for adults with sickle cell disease. J Clin Med. 2019;8(10):1565. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6832368/. Accessed 28 Jun 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. de la Fuente J, Dhedin N, Koyama T, Bernaudin F, Kuentz M, Karnik L, et al. Haploidentical bone marrow transplantation with post-transplantation cyclophosphamide plus thiotepa improves donor engraftment in patients with sickle cell anemia: results of an international learning collaborative. Biol Blood Marrow Transplant. 2019;25(6):1197–209.

    Article  PubMed  Google Scholar 

  116. Stenger EO, Shenoy S, Krishnamurti L. How I treat sickle cell disease with hematopoietic cell transplantation. Blood. 2019;134(25):2249–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kassim AA, DeBaun MR. The case for and against initiating either hydroxyurea therapy, blood transfusion therapy or hematopoietic stem cell transplant in asymptomatic children with sickle cell disease. Expert Opin Pharmacother. 2014;15(3):325–36.

    Article  PubMed  Google Scholar 

  118. Guilcher GMT, Truong TH, Saraf SL, Joseph JJ, Rondelli D, Hsieh MM. Curative therapies: allogeneic hematopoietic cell transplantation from matched related donors using myeloablative, reduced intensity, and nonmyeloablative conditioning in sickle cell disease. Semin Hematol. 2018;55(2):87–93.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Walters MC, Sullivan KM, Bernaudin F, Souillet G, Vannier JP, Johnson FL, et al. Neurologic complications after allogeneic marrow transplantation for sickle cell anemia. Blood. 1995;85(4):879–84.

    Article  CAS  PubMed  Google Scholar 

  120. Chen X, Sun H, Cassady K, Yang S, Chen T, Wang L, et al. The addition of sirolimus to GVHD prophylaxis after allogeneic hematopoietic stem cell transplantation: a meta-analysis of efficacy and safety. Front Oncol. 2021;11:683263. https://www.frontiersin.org/article/10.3389/fonc.2021.683263. Accessed 8 Apr 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sharma SK. What a clinical hematologist should know about T cells? Int Blood Res Rev. 2020;11:20–32.

    Article  Google Scholar 

  122. Valcárcel D, Martino R, Caballero D, Mateos MV, Pérez-Simón JA, Canals C, et al. Chimerism analysis following allogeneic peripheral blood stem cell transplantation with reduced-intensity conditioning. Bone Marrow Transplant. 2003;31(5):387–92.

    Article  PubMed  Google Scholar 

  123. Salit RB, Fowler DH, Dean RM, Pavletic SZ, Hakim FT, Steinberg SM, et al. Host lymphocyte depletion as a strategy to facilitate early full donor chimerism after reduced-intensity allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(10):1509–13.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Anurathapan U, Pakakasama S, Rujkijyanont P, Sirachainan N, Songdej D, Chuansumrit A, et al. Pretransplant immunosuppression followed by reduced-toxicity conditioning and stem cell transplantation in high-risk thalassemia: a safe approach to disease control. Biol Blood Marrow Transplant. 2013;19(8):1259–62.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Weiss L, Abdul-Hai A, Or R, Amir G, Polliack A. Fludarabine in combination with cyclophosphamide decreases incidence of GVHD and maintains effective graft-versus-leukemia effect after allogeneic stem cell transplantation in murine lymphocytic leukemia. Bone Marrow Transplant. 2003;31(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  126. Kalwak K, Mosoń I, Cwian J, Gorczyńska E, Toporski J, Turkiewicz D, et al. A prospective analysis of immune recovery in children following allogeneic transplantation of t-cell-depleted or non-T-cell-depleted hematopoietic cells from HLA-disparate family donors. Transplant Proc. 2003;35(4):1551–5.

    Article  CAS  PubMed  Google Scholar 

  127. Walters MC, Hardy K, Edwards S, Adamkiewicz T, Barkovich J, Bernaudin F, et al. Pulmonary, gonadal, and central nervous system status after bone marrow transplantation for sickle cell disease. Biol Blood Marrow Transplant. 2010;16(2):263–72.

    Article  PubMed  Google Scholar 

  128. Eapen M, Brazauskas R, Walters MC, Bernaudin F, Bo-Subait K, Fitzhugh CD, et al. Effect of donor type and conditioning regimen intensity on allogeneic transplantation outcomes in patients with sickle cell disease: a retrospective multicentre, cohort study. Lancet Haematol. 2019;6(11):e585–96.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Abraham A, Hsieh M, Eapen M, Fitzhugh C, Carreras J, Keesler D, et al. Relationship between mixed donor-recipient chimerism and disease recurrence after hematopoietic cell transplantation for sickle cell disease. Biol Blood Marrow Transplant. 2017;23(12):2178–83.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Andreani M, Nesci S, Lucarelli G, Tonucci P, Rapa S, Angelucci E, et al. Long-term survival of ex-thalassemic patients with persistent mixed chimerism after bone marrow transplantation. Bone Marrow Transplant. 2000;25(4):401–4.

    Article  CAS  PubMed  Google Scholar 

  131. Andreani M, Testi M, Gaziev J, Condello R, Bontadini A, Tazzari PL, et al. Quantitatively different red cell/nucleated cell chimerism in patients with long-term, persistent hematopoietic mixed chimerism after bone marrow transplantation for thalassemia major or sickle cell disease. Haematologica. 2011;96(1):128–33.

    Article  PubMed  Google Scholar 

  132. Kang EM, Areman EM, David-Ocampo V, Fitzhugh C, Link ME, Read EJ, et al. Mobilization, collection, and processing of peripheral blood stem cells in individuals with sickle cell trait. Blood. 2002;99(3):850–5.

    Article  CAS  PubMed  Google Scholar 

  133. Rosenbaum C, Peace D, Rich E, Van Besien K. Granulocyte colony-stimulating factor-based stem cell mobilization in patients with sickle cell disease. Biol Blood Marrow Transplant. 2008;14(6):719–23.

    Article  CAS  PubMed  Google Scholar 

  134. Klee CB, Draetta GF, Hubbard MJ. Calcineurin. Adv Enzymol Relat Areas Mol Biol. 1988;61:149–200.

    CAS  PubMed  Google Scholar 

  135. Tan TC, Robinson PJ. Mechanisms of calcineurin inhibitor-induced neurotoxicity. Transplant Rev. 2006;20(1):49–60.

    Article  Google Scholar 

  136. Chen TH. Childhood posterior reversible encephalopathy syndrome: clinicoradiological characteristics, managements, and outcome. Front Pediatr. 2020;8:585. https://www.frontiersin.org/article/10.3389/fped.2020.00585. Accessed 7 Apr 2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gaziev J, Marziali S, Paciaroni K, Isgrò A, Di Giuliano F, Rossi G, et al. Posterior reversible encephalopathy syndrome after hematopoietic cell transplantation in children with hemoglobinopathies. Biol Blood Marrow Transplant. 2017;23(9):1531–40.

    Article  PubMed  Google Scholar 

  138. Thompson CB, June CH, Sullivan KM, Thomas ED. Association between cyclosporin neurotoxicity and hypomagnesaemia. Lancet Lond Engl. 1984;2(8412):1116–20.

    Article  CAS  Google Scholar 

  139. Santos GW. Busulfan (Bu) and cyclophosphamide (Cy) for marrow transplantation. Bone Marrow Transplant. 1989;4(Suppl 1):236–9.

    PubMed  Google Scholar 

  140. Hassan M, Oberg G, Ehrsson H, Ehrnebo M, Wallin I, Smedmyr B, et al. Pharmacokinetic and metabolic studies of high-dose busulphan in adults. Eur J Clin Pharmacol. 1989;36(5):525–30.

    Article  CAS  PubMed  Google Scholar 

  141. Palmer J, McCune JS, Perales MA, Marks D, Bubalo J, Mohty M, et al. Personalizing busulfan-based conditioning: considerations from the American Society for Blood and Marrow Transplantation Practice Guidelines Committee. Biol Blood Marrow Transplant. 2016;22(11):1915–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S.K. (2023). Stem Cell Transplant for Hemoglobinopathies. In: Basics of Hematopoietic Stem Cell Transplant. Springer, Singapore. https://doi.org/10.1007/978-981-19-5802-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5802-1_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5801-4

  • Online ISBN: 978-981-19-5802-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics