Skip to main content

Basics of Stem Cell Transplant

  • Chapter
  • First Online:
Basics of Hematopoietic Stem Cell Transplant

Abstract

Hematopoietic stem cell transplantation (SCT) is a procedure where the blood-forming stem cells of a donor are given to a recipient with the intention of replacing the defective or damaged hematopoietic system of the recipient. Conditioning chemotherapy is given before SCT. The conditioning, also called as a preparatory step prior to stem cell infusion, is generally considered the most important step in the SCT procedure, and it includes myeloablative, reduced intensity, and non-myeloablative conditioning or preparatory regimens. Its purposes are to help eradicate the patient’s disease prior to the transplant, to create marrow space for the donor cells, and to suppress the host’s immune system to prevent graft rejection. The two important arms of conditioning regimes are myeloablation and lymphoablation, and each conditioning regimen differing from the other with respect to these two parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balassa K, Danby R, Rocha V. Haematopoietic stem cell transplants: principles and indications. Br J Hosp Med (Lond). 2019;80(1):33–9.

    Article  PubMed  Google Scholar 

  2. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354(17):1813–26.

    Article  CAS  PubMed  Google Scholar 

  3. Mannick JA, Lochte HL, Ashley CA, Thomas ED, Ferrebee JW. Autografts of bone marrow in dogs after lethal total-body radiation. Blood. 1960;15:255–66.

    Article  CAS  PubMed  Google Scholar 

  4. Storb R, Epstein RB, Graham TC, Thomas ED. Methotrexate regimens for control of graft-versus-host disease in dogs with allogeneic marrow grafts. Transplantation. 1970;9(3):240–6.

    Article  CAS  PubMed  Google Scholar 

  5. Santos GW, Owens AH. Allogeneic marrow transplants in cyclophosphamide treated mice. Transplant Proc. 1969;1(1):44–6.

    CAS  PubMed  Google Scholar 

  6. Angelucci E. Hematopoietic stem cell transplantation in thalassemia. Hematology. 2010;2010(1):456–62.

    Article  PubMed  Google Scholar 

  7. IsgrĂ² A, Gaziev J, Sodani P, Lucarelli G. Progress in hematopoietic stem cell transplantation as allogeneic cellular gene therapy in thalassemia. Ann N Y Acad Sci. 2010;1202:149–54.

    Article  PubMed  Google Scholar 

  8. Lucarelli G, IsgrĂ² A, Sodani P, Gaziev J. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med. 2012;2(5):a011825.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75(3):555–62.

    Article  CAS  PubMed  Google Scholar 

  10. Forman SJ, Negrin RS, Antin JH, Appelbaum FR. Thomas’ hematopoietic cell transplantation: stem cell transplantation. Wiley; 2015.

    Book  Google Scholar 

  11. Sharma SK. What a clinical hematologist should know about T cells? Int Blood Res Rev. 2020:20–32.

    Google Scholar 

  12. Sharma SK. What a clinical hematologist should know about B cells? Int Blood Res Rev. 2022;13(1):8–22.

    Article  CAS  Google Scholar 

  13. Morrison SJ, Uchida N, Weissman IL. The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol. 1995;11:35–71.

    Article  CAS  PubMed  Google Scholar 

  14. Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol. 2002 Sep;30(9):973–81.

    Article  CAS  PubMed  Google Scholar 

  15. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood. 2005;106(6):1901–10.

    Article  CAS  PubMed  Google Scholar 

  16. Cottler-Fox MH, Lapidot T, Petit I, Kollet O, DiPersio JF, Link D, et al. Stem cell mobilization. Hematology Am Soc Hematol Educ Program. 2003;419–437.

    Google Scholar 

  17. Hidalgo A, Weiss LA, Frenette PS. Functional selectin ligands mediating human CD34(+) cell interactions with bone marrow endothelium are enhanced postnatally. J Clin Invest. 2002;110(4):559–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johns JL, Christopher MM. Extramedullary hematopoiesis: a new look at the underlying stem cell niche, theories of development, and occurrence in animals. Vet Pathol. 2012;49(3):508–23.

    Article  CAS  PubMed  Google Scholar 

  19. Sohawon D, Lau KK, Lau T, Bowden DK. Extra-medullary haematopoiesis: a pictorial review of its typical and atypical locations. J Med Imaging Radiat Oncol. 2012;56(5):538–44.

    Article  PubMed  Google Scholar 

  20. Yamamoto K, Miwa Y, Abe-Suzuki S, Abe S, Kirimura S, Onishi I, et al. Extramedullary hematopoiesis: elucidating the function of the hematopoietic stem cell niche (review). Mol Med Rep. 2016;13(1):587–91.

    Article  CAS  PubMed  Google Scholar 

  21. van Hennik PB, de Koning AE, Ploemacher RE. Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment. Blood. 1999;94(9):3055–61.

    Article  PubMed  Google Scholar 

  22. Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest. 2000;106(11):1331–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramirez PA, Wagner JE, Brunstein CG. Going straight to the point: intra-BM injection of hematopoietic progenitors. Bone Marrow Transplant. 2010;45(7):1127–33.

    Article  CAS  PubMed  Google Scholar 

  24. Koestenbauer S, Zisch A, Dohr G, Zech NH. Protocols for hematopoietic stem cell expansion from umbilical cord blood. Cell Transplant. 2009;18(10):1059–68.

    Article  PubMed  Google Scholar 

  25. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science. 1996;273(5272):242–5.

    Article  CAS  PubMed  Google Scholar 

  26. Cooper B. The origins of bone marrow as the seedbed of our blood: from antiquity to the time of Osler. Bayl Univ Med Cent Proc. 2011;24(2):115–8.

    Article  Google Scholar 

  27. Jacobson LO, Simmons EL, Marks EK, Eldredge JH. Recovery from radiation injury. Science. 1951;113(2940):510–1.

    Article  CAS  PubMed  Google Scholar 

  28. Silva WN, Costa AC, Picoli CC, Rocha BGS, Santos GSP, Costa PAC, et al. Hematopoietic stem cell stretches and moves in its bone marrow niche. Crit Rev Oncol Hematol. 2021;163:103368.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Laurenti E, Varnum-Finney B, Wilson A, Ferrero I, Blanco-Bose WE, Ehninger A, et al. Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell. 2008;3(6):611–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science. 2009;324(5935):1673–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walkley CR, Olsen GH, Dworkin S, Fabb SA, Swann J, McArthur GA, et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell. 2007;129(6):1097–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lemoli RM, D’Addio A. Hematopoietic stem cell mobilization. Haematologica. 2008;93(3):321–4.

    Article  PubMed  Google Scholar 

  33. To LB, Haylock DN, Simmons PJ, Juttner CA. The biology and clinical uses of blood stem cells. Blood. 1997;89(7):2233–58.

    Article  PubMed  Google Scholar 

  34. Welte K, Platzer E, Lu L, Gabrilove JL, Levi E, Mertelsmann R, et al. Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc Natl Acad Sci U S A. 1985;82(5):1526–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fruehauf S, Tricot G. Comparison of unmobilized and mobilized graft characteristics and the implications of cell subsets on autologous and allogeneic transplantation outcomes. Biol Blood Marrow Transplant. 2010;16(12):1629–48.

    Article  PubMed  Google Scholar 

  36. Fruehauf S, Veldwijk MR, Seeger T, Schubert M, Laufs S, Topaly J, et al. A combination of granulocyte-colony-stimulating factor (G-CSF) and plerixafor mobilizes more primitive peripheral blood progenitor cells than G-CSF alone: results of a European phase II study. Cytotherapy. 2009;11(8):992–1001.

    Article  CAS  PubMed  Google Scholar 

  37. Donahue RE, Jin P, Bonifacino AC, Metzger ME, Ren J, Wang E, et al. Plerixafor (AMD3100) and granulocyte colony-stimulating factor (G-CSF) mobilize different CD34+ cell populations based on global gene and microRNA expression signatures. Blood. 2009;114(12):2530–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dahlberg A, Delaney C, Bernstein ID. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood. 2011;117(23):6083–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gammaitoni L, Bruno S, Sanavio F, Gunetti M, Kollet O, Cavalloni G, et al. Ex vivo expansion of human adult stem cells capable of primary and secondary hemopoietic reconstitution. Exp Hematol. 2003;31(3):261–70.

    Article  CAS  PubMed  Google Scholar 

  40. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283(5403):845–8.

    Article  CAS  PubMed  Google Scholar 

  41. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25(6):977–88.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng M, Qin G. Progenitor cell mobilization and recruitment: SDF-1, CXCR4, α4-integrin, and c-kit. Prog Mol Biol Transl Sci. 2012;111:243–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bradford GB, Williams B, Rossi R, Bertoncello I. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol. 1997;25(5):445–53.

    CAS  PubMed  Google Scholar 

  44. Bonsignore MR, Morici G, Santoro A, Pagano M, Cascio L, Bonanno A, et al. Circulating hematopoietic progenitor cells in runners. J Appl Physiol. 2002;93(5):1691–7.

    Article  PubMed  Google Scholar 

  45. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological migration of hematopoietic stem and progenitor cells. Science. 2001;294(5548):1933–6.

    Article  CAS  PubMed  Google Scholar 

  46. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12):823–36.

    Article  CAS  PubMed  Google Scholar 

  48. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    Article  CAS  PubMed  Google Scholar 

  49. Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A. Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 2006;20(9):1496–510.

    Article  CAS  PubMed  Google Scholar 

  50. Lee SJ, Klein J, Haagenson M, Baxter-Lowe LA, Confer DL, Eapen M, et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood. 2007;110(13):4576–83.

    Article  CAS  PubMed  Google Scholar 

  51. Ferrara GB, Bacigalupo A, Lamparelli T, Lanino E, Delfino L, Morabito A, et al. Bone marrow transplantation from unrelated donors: the impact of mismatches with substitutions at position 116 of the human leukocyte antigen class I heavy chain. Blood. 2001;98(10):3150–5.

    Article  CAS  PubMed  Google Scholar 

  52. Bacigalupo A. A closer look at permissive HLA mismatch. Blood. 2013;122(22):3555–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S.K. (2023). Basics of Stem Cell Transplant. In: Basics of Hematopoietic Stem Cell Transplant. Springer, Singapore. https://doi.org/10.1007/978-981-19-5802-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5802-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5801-4

  • Online ISBN: 978-981-19-5802-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics