Skip to main content

Primary Immunodeficiency Diseases

  • Chapter
  • First Online:
Basics of Hematopoietic Stem Cell Transplant

Abstract

Our bone marrow consists of hematopoietic system and gives rise to various cells by hematopoiesis. If hematopoietic stem cells (HSCs) get damaged or defective, then aplastic anemia or Fanconi anemia can develop. If erythroid progenitors or megakaryocytes are damaged then red cell aplasia or amegakaryocytic thrombocytopenia, respectively, can develop. Primary immunodeficiency diseases (PIDs) are the inherited genetic diseases that result due to defect in pathways involved in the development of innate and adaptive immune system. The cells of immunity develop from HSCs in the bone marrow, but other non-hematopoietic cells like thymic epithelial cells, and mucosal epithelial barriers also play important role in immune mechanisms. Understanding PIDs allow better knowledge of the processes involved in development of immune system as well as the diseases which can develop if the immune system or its components fail. Diseases of innate immune system can lead to defects in neutrophil, macrophage, complement function whereas diseases of T and B cells can lead to defects in cell-mediated immunity and antibody production, respectively. Methods are available to diagnose the qualitative and quantitative defects in the cells of immune system. Treatment of PIDs involves supportive care, enzyme replacement therapy, gene therapy, and stem cell transplant (SCT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCusker C, Warrington R. Primary immunodeficiency. Allergy Asthma Clin Immunol. 2011;7(Suppl 1):S11.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Castagnoli R, Delmonte OM, Calzoni E, Notarangelo LD. Hematopoietic stem cell transplantation in primary immunodeficiency diseases: current status and future perspectives. Front Pediatr. 2019;7:295.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Srivastava S, Wood P. Secondary antibody deficiency—causes and approach to diagnosis. Clin Med (Lond). 2016;16(6):571–6.

    Article  PubMed  Google Scholar 

  4. Oliveira JB, Fleisher TA. Laboratory evaluation of primary immunodeficiencies. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S297–305.

    Article  PubMed  Google Scholar 

  5. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human inborn errors of immunity: 2022 update on the classification from the International union of immunological societies expert committee. J Clin Immunol. 2022;42(7):1473–507.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dvorak CC, Haddad E, Heimall J, Dunn E, Buckley RH, Kohn DB, et al. The diagnosis of severe combined immunodeficiency (SCID): the primary immune deficiency treatment consortium (PIDTC) 2022 definitions. J Allergy Clin Immunol. 2023;151(2):539–46.

    Article  CAS  PubMed  Google Scholar 

  7. Romano R, Palamaro L, Fusco A, Iannace L, Maio S, Vigliano I, et al. From murine to human nude/SCID: the thymus, T-cell development and the missing link. Clin Dev Immunol. 2012;2012:467101, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol. 2015;136(5):1186–1205.e1–78.

    Article  Google Scholar 

  9. Malphettes M, Gérard L, Carmagnat M, Mouillot G, Vince N, Boutboul D, et al. Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect. Clin Infect Dis. 2009;49(9):1329–38.

    Article  CAS  PubMed  Google Scholar 

  10. Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, de la Morena MT, et al. International consensus document (ICON): common variable immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016;4(1):38–59.

    Article  PubMed  Google Scholar 

  11. Etzioni A. Leukocyte adhesion deficiencies: molecular basis, clinical findings, and therapeutic options. Adv Exp Med Biol. 2007;601:51–60.

    Article  PubMed  Google Scholar 

  12. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452(7188):773–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, et al. RAG mutations in human B cell-negative SCID. Science. 1996;274(5284):97–9.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta S, Agrawal A. Dendritic cells in inborn errors of immunity. Front Immunol. 2023;14:1080129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pai SY, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al. Transplantation outcomes for severe combined immunodeficiency, 2000-2009. N Engl J Med. 2014;371(5):434–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lankester AC, Albert MH, Booth C, Gennery AR, Güngör T, Hönig M, et al. EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transplant. 2021;56(9):2052–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Antoine C, Müller S, Cant A, Cavazzana-Calvo M, Veys P, Vossen J, et al. Long-term survival and transplantation of haemopoietic stem cells for immunodeficiencies: report of the European experience 1968-99. Lancet. 2003;361(9357):553–60.

    Article  PubMed  Google Scholar 

  18. Bertrand Y, Landais P, Friedrich W, Gerritsen B, Morgan G, Fasth A, et al. Influence of severe combined immunodeficiency phenotype on the outcome of HLA non-identical, T-cell-depleted bone marrow transplantation: a retrospective European survey from the European group for bone marrow transplantation and the European society for immunodeficiency. J Pediatr. 1999;134(6):740–8.

    Article  CAS  PubMed  Google Scholar 

  19. Buckley RH. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol. 2004;22(1):625–55.

    Article  CAS  PubMed  Google Scholar 

  20. Patel DD, Gooding ME, Parrott RE, Curtis KM, Haynes BF, Buckley RH. Thymic function after hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med. 2000;342(18):1325–32.

    Article  CAS  PubMed  Google Scholar 

  21. Dorshkind K, Keller GM, Phillips RA, Miller RG, Bosma GC, O’Toole M, et al. Functional status of cells from lymphoid and myeloid tissues in mice with severe combined immunodeficiency disease. J Immunol. 1984;132(4):1804–8.

    Article  CAS  PubMed  Google Scholar 

  22. Bosticardo M, Pala F, Notarangelo LD. RAG deficiencies: recent advances in disease pathogenesis and novel therapeutic approaches. Eur J Immunol. 2021;51(5):1028–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalman L, Lindegren ML, Kobrynski L, Vogt R, Hannon H, Howard JT, et al. Mutations in genes required for T-cell development: IL7R, CD45, IL2RG, JAK3, RAG1, RAG2, ARTEMIS, and ADA and severe combined immunodeficiency: HuGE review. Genet Med. 2004;6(1):16–26.

    Article  CAS  PubMed  Google Scholar 

  24. Notarangelo L, Casanova JL, Conley ME, Chapel H, Fischer A, Puck J, et al. Primary immunodeficiency diseases: an update from the International union of immunological societies primary immunodeficiency diseases classification committee meeting in budapest, 2005. J Allergy Clin Immunol. 2006;117(4):883–96.

    Article  PubMed  Google Scholar 

  25. Notarangelo LD. Primary immunodeficiencies. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S182–94.

    Article  PubMed  Google Scholar 

  26. Cavadini P, Vermi W, Facchetti F, Fontana S, Nagafuchi S, Mazzolari E, et al. AIRE deficiency in thymus of 2 patients with Omenn syndrome. J Clin Invest. 2005;115(3):728–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Villa A, Notarangelo LD, Roifman CM. Omenn syndrome: inflammation in leaky severe combined immunodeficiency. J Allergy Clin Immunol. 2008;122(6):1082–6.

    Article  CAS  PubMed  Google Scholar 

  28. Klug DB, Carter C, Crouch E, Roop D, Conti CJ, Richie ER. Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc Natl Acad Sci U S A. 1998;95(20):11822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang HX, Pan W, Zheng L, Zhong XP, Tan L, Liang Z, et al. Thymic epithelial cells contribute to thymopoiesis and T cell development. Front Immunol. 2020;10:3099. https://doi.org/10.3389/fimmu.2019.03099; [cited 2023 Mar 8].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Su DM, Navarre S, Oh WJ, Condie BG, Manley NR. A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation. Nat Immunol. 2003;4(11):1128–35.

    Article  CAS  PubMed  Google Scholar 

  31. Pai SY. Treatment of primary immunodeficiency with allogeneic transplant and gene therapy. Hematology Am Soc Hematol Educ Program. 2019;2019(1):457–65.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Giralt S, Ballen K, Rizzo D, Bacigalupo A, Horowitz M, Pasquini M, et al. Reduced-intensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the center for International blood and marrow transplant research. Biol Blood Marrow Transplant. 2009;15(3):367–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transplant. 2009;15(12):1628–33.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wahlstrom JT, Dvorak CC, Cowan MJ. Hematopoietic stem cell transplantation for severe combined immunodeficiency. Curr Pediatr Rep. 2015;3(1):1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dvorak CC, Hassan A, Slatter MA, Hönig M, Lankester AC, Buckley RH, et al. Comparison of outcomes of hematopoietic stem cell transplantation without chemotherapy conditioning by using matched sibling and unrelated donors for treatment of severe combined immunodeficiency. J Allergy Clin Immunol. 2014;134(4):935–943.e15.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature. 2013;495(7440):231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhattacharya D, Rossi DJ, Bryder D, Weissman IL. Purified hematopoietic stem cell engraftment of rare niches corrects severe lymphoid deficiencies without host conditioning. J Exp Med. 2006;203(1):73–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heimall J, Puck J, Buckley RH, Fleisher TA, Gennery AR, Neven B, et al. Current knowledge and priorities for future research in late effects after hematopoietic stem cell transplantation (HCT) for severe combined immunodeficiency (SCID) patients: a consensus statement from the second pediatric blood and marrow transplant consortium international conference on late effects after pediatric HCT. Biol Blood Marrow Transplant. 2017;23(3):379–87.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gennery AR, Lankester A. Long term outcome and immune function after hematopoietic stem cell transplantation for primary immunodeficiency. Front Pediatr. 2019;7:381.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Prockop SE, Petrie HT. Regulation of thymus size by competition for stromal niches among early T cell progenitors. J Immunol. 2004;173(3):1604–11.

    Article  CAS  PubMed  Google Scholar 

  41. Forman SJ, Negrin RS, Antin JH, Appelbaum FR. Thomas’ hematopoietic cell transplantation: stem cell transplantation. Chichester: John Wiley & Sons; 2015.

    Book  Google Scholar 

  42. Slatter MA, Rao K, Amrolia P, Flood T, Abinun M, Hambleton S, et al. Treosulfan-based conditioning regimens for hematopoietic stem cell transplantation in children with primary immunodeficiency: United Kingdom experience. Blood. 2011;117(16):4367–75.

    Article  CAS  PubMed  Google Scholar 

  43. Cavazzana-Calvo M, Carlier F, Le Deist F, Morillon E, Taupin P, Gautier D, et al. Long-term T-cell reconstitution after hematopoietic stem-cell transplantation in primary T-cell-immunodeficient patients is associated with myeloid chimerism and possibly the primary disease phenotype. Blood. 2007;109(10):4575–81.

    Article  CAS  PubMed  Google Scholar 

  44. Sarzotti M, Patel DD, Li X, Ozaki DA, Cao S, Langdon S, et al. T cell repertoire development in humans with SCID after nonablative allogeneic marrow transplantation. J Immunol. 2003;170(5):2711–8.

    Article  CAS  PubMed  Google Scholar 

  45. Gaspar HB, Qasim W, Davies EG, Rao K, Amrolia PJ, Veys P. How I treat severe combined immunodeficiency. Blood. 2013;122(23):3749–58.

    Article  CAS  PubMed  Google Scholar 

  46. Friedrich W, Hönig M. HLA-haploidentical donor transplantation in severe combined immunodeficiency. Hematol Oncol Clin North Am. 2011;25(1):31–44.

    Article  PubMed  Google Scholar 

  47. Horn B, Cowan MJ. Unresolved issues in hematopoietic stem cell transplantation for severe combined immunodeficiency: need for safer conditioning and reduced late effects. J Allergy Clin Immunol. 2013;131(5):1306–11.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Buckley RH. Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: longterm outcomes. Immunol Res. 2011;49:25–43.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Myers LA, Patel DD, Puck JM, Buckley RH. Hematopoietic stem cell transplantation for severe combined immunodeficiency in the neonatal period leads to superior thymic output and improved survival. Blood. 2002;99(3):872–8.

    Article  CAS  PubMed  Google Scholar 

  50. Haddad E, Landais P, Friedrich W, Gerritsen B, Cavazzana-Calvo M, Morgan G, et al. Long-term immune reconstitution and outcome after HLA-nonidentical T-cell-depleted bone marrow transplantation for severe combined immunodeficiency: a European retrospective study of 116 patients. Blood. 1998;91(10):3646–53.

    CAS  PubMed  Google Scholar 

  51. Müller SM, Ege M, Pottharst A, Schulz AS, Schwarz K, Friedrich W. Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood. 2001;98(6):1847–51.

    Article  PubMed  Google Scholar 

  52. Neven B, Leroy S, Decaluwe H, Le Deist F, Picard C, Moshous D, et al. Long-term outcome after hematopoietic stem cell transplantation of a single-center cohort of 90 patients with severe combined immunodeficiency. Blood. 2009;113(17):4114–24.

    Article  CAS  PubMed  Google Scholar 

  53. Cowan MJ, Neven B, Cavazanna-Calvo M, Fischer A, Puck J. Hematopoietic stem cell transplantation for severe combined immunodeficiency diseases. Biol Blood Marrow Transplant. 2008;14(1 Suppl 1):73–5.

    Article  PubMed  Google Scholar 

  54. Dvorak CC, Cowan MJ. Hematopoietic stem cell transplantation for primary immunodeficiency disease. Bone Marrow Transplant. 2008;41(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  55. Boers ACD, Oostdijk W, Weel-Sipman MHV, den Broeck JV, Wit JM, Vossen JM. Final height and hormonal function after bone marrow transplantation in children. J Pediatr. 1996;129(4):544–50.

    Article  Google Scholar 

  56. Flinn AM, Gennery AR. Adenosine deaminase deficiency: a review. Orphanet J Rare Dis. 2018;13:65.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Buckley RH. Primary cellular immunodeficiencies. J Allergy Clin Immunol. 2002;109(5):747–57.

    Article  CAS  PubMed  Google Scholar 

  58. Haddad E, Leroy S, Buckley RH. B cell reconstitution for SCID: should a conditioning regimen be used in the treatment of SCID? J Allergy Clin Immunol. 2013;131(4):994–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sharma SK. What a clinical hematologist should know about T cells? Int Blood Res Rev. 2020;11:20–32.

    Article  Google Scholar 

  60. Lev A, Simon AJ, Bareket M, Bielorai B, Hutt D, Amariglio N, et al. The kinetics of early T and B cell immune recovery after bone marrow transplantation in RAG-2-deficient SCID patients. PLoS One. 2012;7(1):e30494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lo YM, Lo ES, Watson N, Noakes L, Sargent IL, Thilaganathan B, et al. Two-way cell traffic between mother and fetus: biologic and clinical implications. Blood. 1996;88(11):4390–5.

    Article  CAS  PubMed  Google Scholar 

  62. Lanfranchi A, Lougaris V, Notarangelo LD, Soncini E, Comini M, Beghin A, et al. Maternal T-cell engraftment impedes with diagnosis of a SCID-ADA patient. Clin Immunol. 2018;193:118–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laakso SM, Laurinolli TT, Rossi LH, Lehtoviita A, Sairanen H, Perheentupa J, et al. Regulatory T cell defect in APECED patients is associated with loss of naive FOXP3(+) precursors and impaired activated population. J Autoimmun. 2010;35(4):351–7.

    Article  CAS  PubMed  Google Scholar 

  64. Palmer K, Green TD, Roberts JL, Sajaroff E, Cooney M, Parrott R, et al. Unusual clinical and immunologic manifestations of transplacentally acquired maternal T cells in severe combined immunodeficiency. J Allergy Clin Immunol. 2007;120(2):423–8.

    Article  CAS  PubMed  Google Scholar 

  65. Polmar SH, Stern RC, Schwartz AL, Wetzler EM, Chase PA, Hirschhorn R. Enzyme replacement therapy for adenosine deaminase deficiency and severe combined immunodeficiency. N Engl J Med. 1976;295(24):1337–43.

    Article  CAS  PubMed  Google Scholar 

  66. Gaballa A, Sundin M, Stikvoort A, Abumaree M, Uzunel M, Sairafi D, et al. T cell receptor excision circle (TREC) monitoring after allogeneic stem cell transplantation; a predictive marker for complications and clinical outcome. Int J Mol Sci. 2016;17(10):1705; [cited 2020 Aug 18]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5085737/.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hazenberg MD, Borghans JAM, de Boer RJ, Miedema F. Thymic output: a bad TREC record. Nat Immunol. 2003;4(2):97–9.

    Article  CAS  PubMed  Google Scholar 

  68. Notarangelo LD, Kim MS, Walter JE, Lee YN. Human RAG mutations: biochemistry and clinical implications. Nat Rev Immunol. 2016;16(4):234–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cassani B, Poliani PL, Moratto D, Sobacchi C, Marrella V, Imperatori L, et al. Defect of regulatory T cells in patients with Omenn syndrome. J Allergy Clin Immunol. 2010;125(1):209–16.

    Article  CAS  PubMed  Google Scholar 

  70. Etzioni A. Immune deficiency and autoimmunity. Autoimmun Rev. 2003;2(6):364–9.

    Article  CAS  PubMed  Google Scholar 

  71. Bach JF. Infections and autoimmune diseases. J Autoimmun. 2005;25:74–80.

    Article  CAS  PubMed  Google Scholar 

  72. Seidel MG. Autoimmune and other cytopenias in primary immunodeficiencies: pathomechanisms, novel differential diagnoses, and treatment. Blood. 2014;124(15):2337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McLean-Tooke A, Spickett GP, Gennery AR. Immunodeficiency and autoimmunity in 22q11.2 deletion syndrome. Scand J Immunol. 2007;66(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  74. McGhee SA, Lloret MG, Stiehm ER. Immunologic reconstitution in 22q deletion (DiGeorge) syndrome. Immunol Res. 2009;45(1):37–45.

    Article  PubMed  Google Scholar 

  75. Mesin L, Ersching J, Victora GD. Germinal center B cell dynamics. Immunity. 2016;45(3):471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sharma SK. What a clinical hematologist should know about B cells? Int Blood Res Rev. 2022;13(1):8–22.

    Article  CAS  Google Scholar 

  77. Andersen P, Permin H, Andersen V, Schejbel L, Garred P, Svejgaard A, et al. Deficiency of somatic hypermutation of the antibody light chain is associated with increased frequency of severe respiratory tract infection in common variable immunodeficiency. Blood. 2005;105(2):511–7.

    Article  CAS  PubMed  Google Scholar 

  78. Levy Y, Gupta N, Le Deist F, Garcia C, Fischer A, Weill JC, et al. Defect in IgV gene somatic hypermutation in common variable immuno-deficiency syndrome. Proc Natl Acad Sci U S A. 1998;95(22):13135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ahn S, Cunningham-Rundles C. Role of B cells in common variable immune deficiency. Expert Rev Clin Immunol. 2009;5(5):557–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chapel H, Cunningham-Rundles C. Update in understanding common variable immunodeficiency disorders (CVIDs) and the management of patients with these conditions. Br J Haematol. 2009;145(6):709–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gereige JD, Maglione PJ. Current understanding and recent developments in common variable immunodeficiency associated autoimmunity. Front Immunol. 2019;10:2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chapel H, Lucas M, Lee M, Bjorkander J, Webster D, Grimbacher B, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112(2):277–86.

    Article  CAS  PubMed  Google Scholar 

  83. Chapel H. Common variable immunodeficiency disorders (CVID)—diagnoses of exclusion, especially combined immune defects. J Allergy Clin Immunol Pract. 2016;4(6):1158–9.

    Article  PubMed  Google Scholar 

  84. Abolhassani H, Sagvand BT, Shokuhfar T, Mirminachi B, Rezaei N, Aghamohammadi A. A review on guidelines for management and treatment of common variable immunodeficiency. Expert Rev Clin Immunol. 2013;9(6):561–75.

    Article  CAS  PubMed  Google Scholar 

  85. Matson DR, Yang DT. Autoimmune lymphoproliferative syndrome: an overview. Arch Pathol Lab Med. 2020;144(2):245–51.

    Article  CAS  PubMed  Google Scholar 

  86. Bride K, Teachey D. Autoimmune lymphoproliferative syndrome: more than a FAScinating disease. F1000Res. 2017;6:1928; [cited 2020 Nov 29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668920/.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Teachey DT, Seif AE, Grupp SA. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br J Haematol. 2010;148(2):205–16.

    Article  CAS  PubMed  Google Scholar 

  88. Völkl S, Rensing-Ehl A, Allgäuer A, Schreiner E, Lorenz MR, Rohr J, et al. Hyperactive mTOR pathway promotes lymphoproliferation and abnormal differentiation in autoimmune lymphoproliferative syndrome. Blood. 2016;128(2):227–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S.K. (2023). Primary Immunodeficiency Diseases. In: Basics of Hematopoietic Stem Cell Transplant. Springer, Singapore. https://doi.org/10.1007/978-981-19-5802-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5802-1_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5801-4

  • Online ISBN: 978-981-19-5802-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics