Skip to main content

Central Sleep Apnoea Syndromes in Infants

  • Chapter
  • First Online:
Paediatric Sleep Disorders

Abstract

During infancy sleep is at a lifetime maximum and the maturation of sleep is one of the most important physiological processes occurring during the first year of life, particularly the first 6 months. Sleep has a marked effect on cardiorespiratory control which is also rapidly maturing during infancy. Immaturity of cardiorespiratory control frequently leads to respiratory instability and prolonged pauses in breathing that manifest in apnoea of prematurity and periodic breathing. During infancy central apnoeas are common and obstructive apnoea rare. Although apnoea of prematurity is actively treated whilst preterm infants are in the neonatal intensive care unit (NICU), shorter apnoeas and periodic breathing go largely undetected and untreated. The hypoxia associated with apnoea of prematurity has been associated with adverse developmental outcomes, shorter central apnoeas are currently believed to be benign during this early period of development. However, there is growing evidence that these short central apnoeas may be associated with developmental deficits in neurocognition. Further research is required to optimise treatment of apnoea of prematurity and to identify if shorter central apnoeas also require treatment to improve developmental outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Di Fiore JM, Martin RJ, Gauda EB. Apnea of prematurity—perfect storm. Respir Physiol Neurobiol. 2013;189:213–22.

    Article  Google Scholar 

  2. Edwards BA, Sands SA, Berger PJ. Postnatal maturation of breathing stability and loop gain: the role of carotid chemoreceptor development. Respir Physiol Neurobiol. 2013;185:144–55.

    Article  Google Scholar 

  3. Fyfe K, Odoi A, Yiallourou SR, Wong F, Walker AM, Horne RS. Preterm infants exhibit greater variability in cerebrovascular control than term infants. Sleep. 2015;38(9):1411–21.

    Article  Google Scholar 

  4. Fyfe KL, Yiallourou SR, Wong FY, Odoi A, Walker AM, Horne RS. Cerebral oxygenation in preterm infants. Pediatrics. 2014;134:435–45.

    Article  Google Scholar 

  5. Fyfe KL, Yiallourou SR, Wong FY, Odoi A, Walker AM, Horne RS. The effect of gestational age at birth on post-term maturation of heart rate variability. Sleep. 2015;38(10):1635–44.

    Article  Google Scholar 

  6. Fyfe KL, Yiallourou SR, Wong FY, Odoi A, Walker AM, Horne RS. Gestational age at birth affects maturation of baroreflex control. J Pediatr. 2015;166:559–65.

    Article  Google Scholar 

  7. Witcombe NB, Yiallourou SR, Sands SA, Walker AM, Horne RS. Preterm birth alters the maturation of baroreflex sensitivity in sleeping infants. Pediatrics. 2012;129:E89–96.

    Article  Google Scholar 

  8. Witcombe NB, Yiallourou SR, Walker AM, Horne RSC. Blood pressure and heart rate patterns during sleep are altered in preterm-born infants: implications for sudden infant death syndrome. Pediatrics. 2008;122:1242–8.

    Article  Google Scholar 

  9. Witcombe NB, Yiallourou SR, Walker AM, Horne RSC. Delayed blood pressure recovery after head-up tilting during sleep in preterm infants. J Sleep Res. 2010;19:93–102.

    Article  Google Scholar 

  10. Yiallourou SR, Witcombe NB, Sands SA, Walker AM, Horne RS. The development of autonomic cardiovascular control is altered by preterm birth. Early Hum Dev. 2013;89:145–52.

    Article  Google Scholar 

  11. Carskadon MA, Harvey K, Dement WC, Guilleminault C, Simmons FB, Anders TF. Respiration during sleep in children. West J Med. 1978;128:477–81.

    CAS  Google Scholar 

  12. Marcus CL, Omlin KJ, Basinki DJ, Bailey SL, Rachal AB, Von Pechmann WS, Keens TG, Ward SL. Normal polysomnographic values for children and adolescents. Am Rev Respir Dis. 1992;146:1235–9.

    Article  CAS  Google Scholar 

  13. Berry RB, Brooks R, Gamaldo C, Harding SM, Lloyd RM, Quan SF, Troester MT, Vaughn BV. Aasm scoring manual updates for 2017 (Version 2.4). J Clin Sleep Med. 2017;13:665–6.

    Article  Google Scholar 

  14. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson Ward SL, Tangredi MM, American Academy of Sleep, M. Rules for scoring respiratory events in sleep: update of the 2007 Aasm manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions task force of the american academy of sleep medicine. J Clin Sleep Med. 2012;8:597–619.

    Article  Google Scholar 

  15. Brockmann PE, Poets A, Poets CF. Reference values for respiratory events in overnight polygraphy from infants aged 1 and 3 months. Sleep Med. 2013;14:1323–7.

    Article  Google Scholar 

  16. Eichenwald EC, Committee On F, Newborn AAOP. Apnea of prematurity. Pediatrics. 2016;137:e20153757.

    Article  Google Scholar 

  17. Henderson-Smart D. The effect of gestational age on the incidence and duration of recurrent apnoea in newborn babies. Aust Paediatr J. 1981;17:273–6.

    CAS  Google Scholar 

  18. Picone S, Bedetta M, Paolillo P. Caffeine citrate: when and for how long. A literature review. J Matern Fetal Neonatal Med. 2012;25(Suppl 3):11–4.

    Article  CAS  Google Scholar 

  19. Martin RJ, Di Fiore JM, Macfarlane PM, Wilson CG. Physiologic basis for intermittent hypoxic episodes in preterm infants. Adv Exp Med Biol. 2012;758:351–8.

    Article  CAS  Google Scholar 

  20. Abu-Shaweesh JM, Martin RJ. Neonatal apnea: what’s new? Pediatr Pulmonol. 2008;43:937–44.

    Article  Google Scholar 

  21. Martin RJ, Wilson CG. Apnea of prematurity. Compr Physiol. 2012;2:2923–31.

    Article  Google Scholar 

  22. Morton SU, Smith VC. Treatment options for apnoea of prematurity. Arch Dis Child Fetal Neonatal Ed. 2016;101:F352–6.

    Article  Google Scholar 

  23. Di Fiore JM, Bloom JN, Orge F, Schutt A, Schluchter M, Cheruvu VK, Walsh M, Finer N, Martin RJ. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J Pediatr. 2010;157:69–73.

    Article  Google Scholar 

  24. Janvier A, Khairy M, Kokkotis A, Cormier C, Messmer D, Barrington KJ. Apnea is associated with neurodevelopmental impairment in very low birth weight iinfants. J Perinatol. 2004;24:763.

    Article  Google Scholar 

  25. Pillekamp F, Hermann C, Keller T, Von Gontard A, Kribs A, Roth B. Factors influencing apnea and bradycardia of prematurity—implications for neurodevelopment. Neonatology. 2007;91:155–61.

    Article  CAS  Google Scholar 

  26. Poets CF, Roberts RS, Schmidt B, Whyte RK, Asztalos EV, Bader D, Bairam A, Moddemann D, Peliowski A, Rabi Y, Solimano A, Nelson H, Canadian Oxygen Trial I. Association between intermittent hypoxemia or bradycardia and late death or disability in extremely preterm infants. JAMA. 2015;314:595–603.

    Article  CAS  Google Scholar 

  27. Fairchild K, Mohr M, Paget-Brown A, Tabacaru C, Lake D, Delos J, Moorman JR, Kattwinkel J. Clinical associations of immature breathing in preterm infants: Part 1-central apnea. Pediatr Res. 2016;80:21–7.

    Article  Google Scholar 

  28. Gizzi C, Montecchia F, Panetta V, Castellano C, Mariani C, Campelli M, Papoff P, Moretti C, Agostino R. Is synchronised nippv more effective than nippv and ncpap in treating apnoea of prematurity (Aop)? A randomised cross-over trial. Arch Dis Child Fetal Neonatal Ed. 2015;100:F17–23.

    Article  Google Scholar 

  29. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, Solimano A, Tin W. Caffeine therapy for apnea of prematurity. NEJM. 2006;354:2112–21.

    Article  CAS  Google Scholar 

  30. Livera LN, Spencer SA, Thorniley MS, Wickramasinghe YA, Rolfe P. Effects of hypoxaemia and bradycardia on neonatal cerebral haemodynamics. Arch Dis Child. 1991;66:376–80.

    Article  CAS  Google Scholar 

  31. Pichler G, Urlesberger B, Muller W. Impact of bradycardia on cerebral oxygenation and cerebral blood volume during apnoea in preterm infants. Physiol Meas. 2003;24:671–80.

    Article  Google Scholar 

  32. Perlman JM, Volpe JJ. Are venous circulatory abnormalities important in the pathogenesis of hemorrhagic and/or ischemic cerebral injury? Pediatrics. 1987;80:705–11.

    Article  CAS  Google Scholar 

  33. Jenni OG, Wolf M, Hengartner M, Siebenthal K, Keel M, Bucher HU. Impact of central, obstructive and mixed apnea on cerebral hemodynamics in preterm infants. Biol Neonate. 1996;70:91–100.

    Article  CAS  Google Scholar 

  34. Pichler G, Schmolzer G, Muller W, Urlesberger B. Body position-dependent changes in cerebral hemodynamics during apnea in preterm infants. Brain Dev. 2001;23:395–400.

    Article  CAS  Google Scholar 

  35. Urlesberger B, Kaspirek A, Pichler G, Muller W. Apnoea of prematurity and changes in cerebral oxygenation and cerebral blood volume. Neuropediatrics. 1999;30:29–33.

    Article  CAS  Google Scholar 

  36. Schmid MB, Hopfner RJ, Lenhof S, Hummler HD, Fuchs H. Cerebral oxygenation during intermittent hypoxemia and bradycardia in preterm infants. Neonatology. 2015;107:137–46.

    Article  CAS  Google Scholar 

  37. Watkin SL, Spencer SA, Dimmock PW, Wickramasinghe Y, Rolfe P. A comparison of pulse oximetry and near infrared spectroscopy (Nirs) in the detection of hypoxaemia occurring with pauses in nasal airflow in neonates. J Clin Monit Comput. 1999;15:441–7.

    Article  CAS  Google Scholar 

  38. Yamamoto A, Yokoyama N, Yonetani M, Uetani Y, Nakamura H, Nakao H. Evaluation of change of cerebral circulation by SpO2 In preterm infants with apneic episodes using near infrared spectroscopy. Pediatr Int. 2003;45:661–4.

    Article  Google Scholar 

  39. Walter LM, Ahmed B, Odoi A, Cooney H, Horne RSC, Wong FY. Bradycardias are associated with more severe effects on cerebral oxygenation in very preterm infants than in late preterm infants. Early Hum Dev. 2018;127:33–41.

    Article  Google Scholar 

  40. Vagedes J, Poets CF, Dietz K. Averaging time, desaturation level, duration and extent. Arch Dis Child Fetal Neonatal Ed. 2013;98:F265–6.

    Article  Google Scholar 

  41. Elder DE, Whale J, Galletly D, Campbell AJ. Respiratory events in preterm infants prior to discharge: with and without clinically concerning apnoea. Sleep Breath. 2011;15:867–73.

    Article  Google Scholar 

  42. Horne RSC, Fung ACH, Ncneil S, Fyfe KL, Odoi A, Wong FY. The longitudinal effects of persistent apnea on cerebral oxygenation in infants born preterm. J Pediatr. 2017;182:79–84.

    Article  Google Scholar 

  43. Horne RSC, Sun S, Yiallourou SR, Fyfe KL, Odoi A, Wong FY. Comparison of the longitudinal effects of persistent periodic breathing and apnoea on cerebral oxygenation in term- and preterm-born infants. J Physiol. 2018;596:6021–31.

    Article  CAS  Google Scholar 

  44. Erickson G, Dobson NR, Hunt CE. Immature control of breathing and apnea of prematurity: the known and unknown. J Perinatol. 2021; https://doi.org/10.1038/s41372-021-01010-zs.

  45. Al-Saif S, Alvaro R, Manfreda J, Kwiatkowski K, Cates D, Qurashi M, Rigatto H. A randomized controlled trial of theophylline versus CO2 inhalation for treating apnea of prematurity. J Pediatr. 2008;153:513–8.

    Article  CAS  Google Scholar 

  46. Henderson-Smart DJ, Steer P. Methylxanthine treatment for apnea in preterm infants. Cochrane Database Syst Rev. 2001:Cd000140.

    Google Scholar 

  47. Mccall AL, Millington WR, Wurtman RJ. Blood-brain barrier transport of caffeine: dose-related restriction of adenine transport. Life Sci. 1982;31:2709–15.

    Article  CAS  Google Scholar 

  48. Chardon K, Bach V, Telliez F, Cardot V, Tourneux P, Leke A, Libert JP. Effect of caffeine on peripheral chemoreceptor activity in premature neonates: interaction with sleep stages. J Appl Physiol. 2004;96:2161–6.

    Article  CAS  Google Scholar 

  49. Montandon G, Kinkead R, Bairam A. Adenosinergic modulation of respiratory activity: developmental plasticity induced by perinatal caffeine administration. Respir Physiol Neurobiol. 2008;164:87–95.

    Article  CAS  Google Scholar 

  50. Eichenwald EC. National and international guidelines for neonatal caffeine use: are they evidenced-based? Semin Fetal Neonatal Med. 2020;25:101177.

    Article  Google Scholar 

  51. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, Solimano A, Tin W. Long-term effects of caffeine therapy for apnea of prematurity. NEJM. 2007;357:1893–902.

    Article  CAS  Google Scholar 

  52. Doyle LW, Cheong J, Hunt RW, Lee KJ, Thompson DK, Davis PG, Rees S, Anderson PJ, Inder TE. Caffeine and brain development in very preterm infants. Ann Neurol. 2010;68:734–42.

    Article  CAS  Google Scholar 

  53. Schmidt B, Anderson PJ, Doyle LW, Dewey D, Grunau RE, Asztalos EV, Davis PG, Tin W, Moddemann D, Solimano A, Ohlsson A, Barrington KJ, Roberts RS. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity. JAMA. 2012;307:275–82.

    Article  CAS  Google Scholar 

  54. Puia-Dumitrescu M, Smith PB, Zhao J, Soriano A, Payne EH, Harper B, Bendel-Stenzel E, Moya F, Chhabra R, Ku L, Laughon M, Wade KC, Best Pharmaceuticals For Children Act-Pediatric Trials Network Steering, C. Dosing and safety of off-label use of caffeine citrate in premature infants. J Pediatr. 2019;211:27–32 E1.

    Article  CAS  Google Scholar 

  55. Brattstrom P, Russo C, Ley D, Bruschettini M. High-versus low-dose caffeine in preterm infants: a systematic review and meta-analysis. Acta Paediatr. 2019;108:401–10.

    Article  Google Scholar 

  56. Ravichandran S, Chouthai NS, Patel B, Sharma A, Gupte A, Ma MM, Mamilla D, Lulic-Botica M, Thomas R, Kamat D. Higher daily doses of caffeine lowered the incidence of moderate to severe neurodevelopmental disabilities in very low birth weight infants. Acta Paediatr. 2019;108:430–5.

    Article  CAS  Google Scholar 

  57. Mcpherson C, Neil JJ, Tjoeng TH, Pineda R, Inder TE. A pilot randomized trial of high-dose caffeine therapy in preterm infants. Pediatr Res. 2015;78:198–204.

    Article  CAS  Google Scholar 

  58. Simakajornboon N, Beckerman RC, Mack C, Sharon D, Gozal D. Effect of supplemental oxygen on sleep architecture and cardiorespiratory events in preterm infants. Pediatrics. 2002;110:884–8.

    Article  Google Scholar 

  59. Alderliesten T, Van Bel F, Van Der Aa NE, Steendijk P, Van Haastert IC, De Vries LS, Groenendaal F, Lemmers P. Low cerebral oxygenation in preterm infants is associated with adverse neurodevelopmental outcome. J Pediatr. 2019;207:109–116 E2.

    Article  Google Scholar 

  60. Kelly DH, Shannon DC. Periodic breathing in infants with near-miss sudden infant death syndrome. Pediatrics. 1979;63:355–60.

    Article  CAS  Google Scholar 

  61. Kelly DH, Stellwagen LM, Kaitz E, Shannon DC. Apnea and periodic breathing in normal full-term infants during the first twelve months. Pediatr Pulmonol. 1985;1:215–9.

    Article  CAS  Google Scholar 

  62. Albani M, Bentele KH, Budde C, Schulte FJ. Infant sleep apnea profile: preterm vs. term infants. Eur J Pediatr. 1985;143:261–8.

    Article  CAS  Google Scholar 

  63. Decima PF, Fyfe KL, Odoi A, Wong FY, Horne RS. The longitudinal effects of persistent periodic breathing on cerebral oxygenation in preterm infants. Sleep Med. 2015;16:729–35.

    Article  Google Scholar 

  64. Siriwardhana LS., Lee A, Mann DL, Dawadi S, Nixon GM, Wong FY, Edwards BA, Horne RSC. Longitudinal assessment of ventilatory control instability in preterm infants with periodic breathing. J Pediatr. Submitted; 2021.

    Google Scholar 

  65. Jenni OG, Bucher HU, Von Siebenthal K, Wolf M, Keel M, Duc G. Cyclical variations in cerebral blood volume during periodic breathing. Acta Paediatr. 1994;83:1095–6.

    Article  CAS  Google Scholar 

  66. Urlesberger B, Pichler G, Gradnitzer E, Reiterer F, Zobel G, Muller W. Changes in cerebral blood volume and cerebral oxygenation during periodic breathing in term infants. Neuropediatrics. 2000;31:75–81.

    Article  CAS  Google Scholar 

  67. Van Bel F, Lemmers P, Naulaers G. Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology. 2008;94:237–44.

    Article  Google Scholar 

  68. Soukhova-O'hare GK, Cheng ZJ, Roberts AM, Gozal D. Postnatal intermittent hypoxia alters baroreflex function in adult rats. Am J Physiol Heart Circ Physiol. 2006;290:H1157–64.

    Article  CAS  Google Scholar 

  69. Cohen G, Lagercrantz H, Katz-Salamon M. Abnormal circulatory stress responses of preterm graduates. Pediatr Res. 2007;61:329–34.

    Article  Google Scholar 

  70. Lumeng JC, Chervin RD. Epidemiology of pediatric obstructive sleep apnea. Proc Am Thorac Soc. 2008;5:242–52.

    Article  Google Scholar 

  71. Rosen CL, Larkin EK, Kirchner HL, Emancipator JL, Bivins SF, Surovec SA, Martin RJ, Redline S. Prevalence and risk factors for sleep-disordered breathing in 8- to 11-year-old children: association with race and prematurity. J Pediatr. 2003;142:383–9.

    Article  Google Scholar 

  72. Kato I, Franco P, Groswasser J, Kelmanson I, Togari H, Kahn A. Frequency of obstructive and mixed sleep apneas in 1,023 infants. Sleep. 2000;23:487–92.

    Article  CAS  Google Scholar 

  73. Gislason T, Benediktsdottir B. Snoring, apneic episodes, and nocturnal hypoxemia among children 6 months to 6 years old. an epidemiologic study of lower limit of prevalence. Chest. 1995;107:963–6.

    Article  CAS  Google Scholar 

  74. Kelmanson IA. Snoring, noisy breathing in sleep and daytime behaviour in 2-4-month-old infants. Eur J Pediatr. 2000;159:734–9.

    Article  CAS  Google Scholar 

  75. Mitchell EA, Thompson JM. Snoring in the first year of life. Acta Paediatr. 2003;92:425–9.

    Article  CAS  Google Scholar 

  76. Montgomery-Downs HE, Gozal D. Sleep habits and risk factors for sleep-disordered breathing in infants and young toddlers in Louisville, Kentucky. Sleep Med. 2006;7:211–9.

    Article  Google Scholar 

  77. Piteo AM, Lushington K, Roberts RM, Van Den Heuvel CJ, Nettelbeck T, Kohler MJ, Martin AJ, Kennedy JD. Prevalence of snoring and associated factors in infancy. Sleep Med. 2011;12:787–92.

    Article  CAS  Google Scholar 

  78. Piteo AM, Kennedy JD, Roberts RM, Martin AJ, Nettelbeck T, Kohler MJ, Lushington K. Snoring and cognitive development in infancy. Sleep Med. 2011;12:981–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemary S. C. Horne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horne, R.S.C., Wong, F.Y. (2022). Central Sleep Apnoea Syndromes in Infants. In: Li, A.M., Chan, K.Cc. (eds) Paediatric Sleep Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-19-5791-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5791-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5790-1

  • Online ISBN: 978-981-19-5791-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics