Skip to main content

Etiology and Pathogenesis of Fulminant Myocarditis

  • Chapter
  • First Online:
Fulminant Myocarditis
  • 255 Accesses

Abstract

1. The etiology of fulminant myocarditis includes infectious factors and non-infectious factors, while the most common one is viral infection. 2. Common viruses causing myocarditis include adenovirus, enterovirus, cytomegalovirus, EB virus, hepatitis C, herpesvirus, influenza virus and coronavirus. 3. Recently, it was found that immune checkpoint inhibitors can also cause fulminant myocarditis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karjalainen J, Heikkila J. Incidence of three presentations of acute myocarditis in young men in military service—a 20-year experience. Eur Heart J. 1999;20:1120–5. https://doi.org/10.1053/euhj.1998.1444.

    Article  CAS  PubMed  Google Scholar 

  2. Crowell RL, Landau BJ. A short history and introductory background on the coxsackieviruses of group B. Curr Top Microbiol Immunol. 1997;223:1–11. https://doi.org/10.1007/978-3-642-60687-8_1.

    Article  CAS  PubMed  Google Scholar 

  3. Schultz JC, Hilliard AA, Cooper LT, Rihal CS. Diagnosis and treatment of viral myocarditis. Mayo Clin Proc. 2009;84:1001–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Andreoletti L, Venteo L, Douche-Aourik F, Canas F, Lorin de la Grandmaison G, Jacques J, Moret H, Jovenin N, Mosnier JF, Matta M, et al. Active Coxsackieviral B infection is associated with disruption of dystrophin in endomyocardial tissue of patients who died suddenly of acute myocardial infarction. J Am Coll Cardiol. 2007;50:2207–14. https://doi.org/10.1016/j.jacc.2007.07.080.

    Article  CAS  PubMed  Google Scholar 

  5. Kuhl U, Pauschinger M, Noutsias M, Seeberg B, Bock T, Lassner D, Poller W, Kandolf R, Schultheiss HP. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with "idiopathic" left ventricular dysfunction. Circulation. 2005;111:887–93. https://doi.org/10.1161/01.Cir.0000155616.07901.35.

    Article  PubMed  Google Scholar 

  6. Bowles NE, Ni J, Kearney DL, Pauschinger M, Schultheiss H-P, McCarthy R, Hare J, Bricker JT, Bowles KR, Towbin JA. Detection of viruses in myocardial tissues by polymerase chain reaction. Evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol. 2003;42:466–72. https://doi.org/10.1016/s0735-1097(03)00648-x.

    Article  PubMed  Google Scholar 

  7. Breinholt JP, Moulik M, Dreyer WJ, Denfield SW, Kim JJ, Jefferies JL, Rossano JW, Gates CM, Clunie SK, Bowles KR, et al. Viral epidemiologic shift in inflammatory heart disease: the increasing involvement of parvovirus B19 in the myocardium of pediatric cardiac transplant patients. J Heart Lung Transplant. 2010;29:739–46. https://doi.org/10.1016/j.healun.2010.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Matsumori A, Shimada T, Chapman NM, Tracy SM, Mason JW. Myocarditis and heart failure associated with hepatitis C virus infection. J Card Fail. 2006;12:293–8. https://doi.org/10.1016/j.cardfail.2005.11.004.

    Article  PubMed  Google Scholar 

  9. Bratincsak A, El-Said HG, Bradley JS, Shayan K, Grossfeld PD, Cannavino CR. Fulminant myocarditis associated with pandemic H1N1 influenza a virus in children. J Am Coll Cardiol. 2010;55:928–9. https://doi.org/10.1016/j.jacc.2010.01.004.

    Article  PubMed  Google Scholar 

  10. Veronese G, Ammirati E, Brambatti M, Merlo M, Cipriani M, Potena L, Sormani P, Aoki T, Sugimura K, Sawamura A, et al. Viral genome search in myocardium of patients with fulminant myocarditis. Eur J Heart Fail. 2020; https://doi.org/10.1002/ejhf.1738.

  11. Heidecker B, Williams SH, Jain K, Oleynik A, Patriki D, Kottwitz J, Berg J, Garcia JA, Baltensperger N, Lovrinovic M, et al. Virome sequencing in patients with myocarditis. Circ Heart Fail. 2020;13:e007103. https://doi.org/10.1161/CIRCHEARTFAILURE.120.007103.

    Article  CAS  PubMed  Google Scholar 

  12. Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020;45:230–2. https://doi.org/10.1007/s00059-020-04909-z.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nikonov OS, Chernykh ES, Garber MB, Nikonova EY. Enteroviruses: classification, diseases they cause, and approaches to development of antiviral drugs. Biochemistry (Mosc). 2017;82:1615–31. https://doi.org/10.1134/S0006297917130041.

    Article  CAS  Google Scholar 

  14. Pelletier J, Sonenberg N. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature. 1988;334:320–5. https://doi.org/10.1038/334320a0.

    Article  CAS  PubMed  Google Scholar 

  15. Noor A, Krilov LR. Enterovirus infections. Pediatr Rev. 2016;37:505–15. https://doi.org/10.1542/pir.2016-0103.

    Article  PubMed  Google Scholar 

  16. Lynch JP 3rd, Kajon AE. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. Semin Respir Crit Care Med. 2016;37:586–602. https://doi.org/10.1055/s-0036-1584923.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Henquell C, Boeuf B, Mirand A, Bacher C, Traore O, Dechelotte P, Labbe A, Bailly JL, Peigue-Lafeuille H. Fatal adenovirus infection in a neonate and transmission to health-care workers. J Clin Virol. 2009;45:345–8. https://doi.org/10.1016/j.jcv.2009.04.019.

    Article  PubMed  Google Scholar 

  18. Kajon AE, Hang J, Hawksworth A, Metzgar D, Hage E, Hansen CJ, Kuschner RA, Blair P, Russell KL, Jarman RG. Molecular epidemiology of adenovirus type 21 respiratory strains isolated from us military trainees (1996-2014). J Infect Dis. 2015;212:871–80. https://doi.org/10.1093/infdis/jiv141.

    Article  PubMed  Google Scholar 

  19. Verdonschot J, Hazebroek M, Merken J, Debing Y, Dennert R, Brunner-La Rocca HP, Heymans S. Relevance of cardiac parvovirus B19 in myocarditis and dilated cardiomyopathy: review of the literature. Eur J Heart Fail. 2016;18:1430–41. https://doi.org/10.1002/ejhf.665.

    Article  PubMed  Google Scholar 

  20. Ackermann M, Wagner WL, Rellecke P, Akhyari P, Boeken U, Reinecke P. Parvovirus B19-induced angiogenesis in fulminant myocarditis. Eur Heart J. 2020; https://doi.org/10.1093/eurheartj/ehaa092.

  21. Young NS, Brown KE. Parvovirus B19. N Engl J Med. 2004;350:586–97. https://doi.org/10.1056/NEJMra030840.

    Article  CAS  PubMed  Google Scholar 

  22. Kaufmann B, Simpson AA, Rossmann MG. The structure of human parvovirus B19. Proc Natl Acad Sci U S A. 2004;101:11628–33. https://doi.org/10.1073/pnas.0402992101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cohen BJ, Buckley MM. The prevalence of antibody to human parvovirus B19 in England and Wales. J Med Microbiol. 1988;25:151–3. https://doi.org/10.1099/00222615-25-2-151.

    Article  CAS  PubMed  Google Scholar 

  24. Rohrer C, Gartner B, Sauerbrei A, Bohm S, Hottentrager B, Raab U, Thierfelder W, Wutzler P, Modrow S. Seroprevalence of parvovirus B19 in the German population. Epidemiol Infect. 2008;136:1564–75. https://doi.org/10.1017/S0950268807009958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mossong J, Hens N, Friederichs V, Davidkin I, Broman M, Litwinska B, Siennicka J, Trzcinska A, Vand P, Beutels P, et al. Parvovirus B19 infection in five European countries: seroepidemiology, force of infection and maternal risk of infection. Epidemiol Infect. 2008;136:1059–68. https://doi.org/10.1017/S0950268807009661.

    Article  CAS  PubMed  Google Scholar 

  26. Braun DK, Dominguez G, Pellett PE. Human herpesvirus 6. Clin Microbiol Rev. 1997;10:521–67. https://doi.org/10.1128/CMR.10.3.521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zerr DM, Meier AS, Selke SS, Frenkel LM, Huang ML, Wald A, Rhoads MP, Nguy L, Bornemann R, Morrow RA, et al. A population-based study of primary human herpesvirus 6 infection. N Engl J Med. 2005;352:768–76. https://doi.org/10.1056/NEJMoa042207.

    Article  CAS  PubMed  Google Scholar 

  28. Levy JA, Ferro F, Greenspan D, Lennette ET. Frequent isolation of HHV-6 from saliva and high seroprevalence of the virus in the population. Lancet. 1990;335:1047–50. https://doi.org/10.1016/0140-6736(90)92628-u.

    Article  CAS  PubMed  Google Scholar 

  29. Briggs M, Fox J, Tedder RS. Age prevalence of antibody to human herpesvirus 6. Lancet. 1988;1:1058–9. https://doi.org/10.1016/s0140-6736(88)91883-1.

    Article  CAS  PubMed  Google Scholar 

  30. Hall CB, Long CE, Schnabel KC, Caserta MT, McIntyre KM, Costanzo MA, Knott A, Dewhurst S, Insel RA, Epstein LG. Human herpesvirus-6 infection in children. A prospective study of complications and reactivation. N Engl J Med. 1994;331:432–8. https://doi.org/10.1056/NEJM199408183310703.

    Article  CAS  PubMed  Google Scholar 

  31. Kociol RD, Cooper LT, Fang JC, Moslehi JJ, Pang PS, Sabe MA, Shah RV, Sims DB, Thiene G, Vardeny O, et al. Recognition and initial management of fulminant myocarditis: a scientific statement from the American Heart Association. Circulation. 2020;141:e69–92. https://doi.org/10.1161/CIR.0000000000000745.

    Article  PubMed  Google Scholar 

  32. Moslehi JJ. Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med. 2016;375:1457–67. https://doi.org/10.1056/NEJMra1100265.

    Article  CAS  PubMed  Google Scholar 

  33. Bristow MR, Thompson PD, Martin RP, Mason JW, Billingham ME, Harrison DC. Early anthracycline cardiotoxicity. Am J Med. 1978;65:823–32. https://doi.org/10.1016/0002-9343(78)90802-1.

    Article  CAS  PubMed  Google Scholar 

  34. Wang DY, Okoye GD, Neilan TG, Johnson DB, Moslehi JJ. Cardiovascular toxicities associated with cancer immunotherapies. Curr Cardiol Rep. 2017;19:21. https://doi.org/10.1007/s11886-017-0835-0.

    Article  CAS  PubMed  Google Scholar 

  35. Vanpouille-Box C, Lhuillier C, Bezu L, Aranda F, Yamazaki T, Kepp O, Fucikova J, Spisek R, Demaria S, Formenti SC, et al. Trial watch: immune checkpoint blockers for cancer therapy. Onco Targets Ther. 2017;6:e1373237. https://doi.org/10.1080/2162402X.2017.1373237.

    Article  Google Scholar 

  36. Postow MA, Longo DL, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378:158–68. https://doi.org/10.1056/NEJMra1703481.

    Article  CAS  PubMed  Google Scholar 

  37. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, Hicks M, Puzanov I, Alexander MR, Bloomer TL, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375:1749–55. https://doi.org/10.1056/NEJMoa1609214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Escudier M, Cautela J, Malissen N, Ancedy Y, Orabona M, Pinto J, Monestier S, Grob JJ, Scemama U, Jacquier A, et al. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation. 2017;136:2085–7. https://doi.org/10.1161/circulationaha.117.030571.

    Article  PubMed  Google Scholar 

  39. Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, Sullivan RJ, Damrongwatanasuk R, Chen CL, Gupta D, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71:1755–64. https://doi.org/10.1016/j.jacc.2018.02.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ball S, Ghosh RK, Wongsaengsak S, Bandyopadhyay D, Ghosh GC, Aronow WS, Fonarow GC, Lenihan DJ, Bhatt DL. Cardiovascular toxicities of immune checkpoint inhibitors: jacc review topic of the week. J Am Coll Cardiol. 2019;74:1714–27. https://doi.org/10.1016/j.jacc.2019.07.079.

    Article  CAS  PubMed  Google Scholar 

  41. Simons KH, de Jong A, Jukema JW, de Vries MR, Arens R, Quax PHA. T cell co-stimulation and co-inhibition in cardiovascular disease: a double-edged sword. Nat Rev Cardiol. 2019;16:325–43. https://doi.org/10.1038/s41569-019-0164-7.

    Article  PubMed  Google Scholar 

  42. Moslehi JJ, Salem JE, Sosman JA, Lebrun-Vignes B, Johnson DB. Increased reporting of fatal immune checkpoint inhibitorassociated myocarditis. Lancet. 2018;391:933. https://doi.org/10.1016/S0140-6736(18)30533-6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Koelzer VH, Rothschild SI, Zihler D, Wicki A, Willi B, Willi N, Voegeli M, Cathomas G, Zippelius A, Mertz KD. Systemic inflammation in a melanoma patient treated with immune checkpoint inhibitors-an autopsy study. J Immunother Cancer. 2016;4:13. https://doi.org/10.1186/s40425-016-0117-1.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mehta A, Gupta A, Hannallah F, Koshy T, Reimold S. Myocarditis as an immune-related adverse event with ipilimumab/nivolumab combination therapy for metastatic melanoma. Melanoma Res. 2016;26:319–20. https://doi.org/10.1097/CMR.0000000000000251.

    Article  PubMed  Google Scholar 

  45. Heinzerling L, Ott PA, Hodi FS, Husain AN, Tajmir-Riahi A, Tawbi H, Pauschinger M, Gajewski TF, Lipson EJ, Luke JJ. Cardiotoxicity associated with CTLA4 and PD1 blocking immunotherapy. J Immunother Cancer. 2016;4:50. https://doi.org/10.1186/s40425-016-0152-y.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zimmer L, Goldinger SM, Hofmann L, Loquai C, Ugurel S, Thomas I, Schmidgen MI, Gutzmer R, Utikal JS, Goppner D, et al. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer. 2016;60:210–25. https://doi.org/10.1016/j.ejca.2016.02.024.

    Article  CAS  PubMed  Google Scholar 

  47. Tadokoro T, Keshino E, Makiyama A, Sasaguri T, Ohshima K, Katano H, Mohri M. Acute lymphocytic myocarditis with anti-pd-1 antibody nivolumab. Circ Heart Fail. 2016;9 https://doi.org/10.1161/CIRCHEARTFAILURE.116.003514.

  48. Semper H, Muehlberg F, Schulz-Menger J, Allewelt M, Grohe C. Drug-induced myocarditis after nivolumab treatment in a patient with PDL1- negative squamous cell carcinoma of the lung. Lung Cancer. 2016;99:117–9. https://doi.org/10.1016/j.lungcan.2016.06.025.

    Article  CAS  PubMed  Google Scholar 

  49. Gibson R, Delaune J, Szady A, Markham M. Suspected autoimmune myocarditis and cardiac conduction abnormalities with nivolumab therapy for non-small cell lung cancer. BMJ Case Rep. 2016;2016 https://doi.org/10.1136/bcr-2016-216228.

  50. Schulert GS, Grom AA. Pathogenesis of macrophage activation syndrome and potential for cytokine- directed therapies. Annu Rev Med. 2015;66:145–59. https://doi.org/10.1146/annurev-med-061813-012806.

    Article  CAS  PubMed  Google Scholar 

  51. Mehta P, Porter JC, Manson JJ, Isaacs JD, Openshaw PJM, McInnes IB, Summers C, Chambers RC. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: challenges and opportunities. Lancet Respir Med. 2020; https://doi.org/10.1016/s2213-2600(20)30267-8.

  52. Clark IA. The advent of the cytokine storm. Immunol Cell Biol. 2007;85:271–3. https://doi.org/10.1038/sj.icb.7100062.

    Article  CAS  PubMed  Google Scholar 

  53. Abe S, Okura Y, Hoyano M, Kazama R, Watanabe S, Ozawa T, Saigawa T, Hayashi M, Yoshida T, Tachikawa H, et al. Plasma concentrations of cytokines and neurohumoral factors in a case of fulminant myocarditis successfully treated with intravenous immunoglobulin and percutaneous cardiopulmonary support. Circ J. 2004;68:1223–6. https://doi.org/10.1253/circj.68.1223.

    Article  PubMed  Google Scholar 

  54. Noji Y. Anakinra in fulminant myocarditis: targeting Interleukin-1 and the inflammasome formation. Crit Care Med. 2016;44:1630–1. https://doi.org/10.1097/CCM.0000000000001769.

    Article  PubMed  Google Scholar 

  55. Hay KA, Hanafi LA, Li D, Gust J, Liles WC, Wurfel MM, Lopez JA, Chen J, Chung D, Harju-Baker S, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130:2295–306. https://doi.org/10.1182/blood-2017-06-793141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hay KA. Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy. Br J Haematol. 2018;183:364–74. https://doi.org/10.1111/bjh.15644.

    Article  CAS  PubMed  Google Scholar 

  57. Kindler E, Thiel V, Weber F. Interaction of SARS and MERS coronaviruses with the antiviral interferon response. Adv Virus Res. 2016;96:219–43. https://doi.org/10.1016/bs.aivir.2016.08.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, Perlman S. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19:181–93. https://doi.org/10.1016/j.chom.2016.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–39. https://doi.org/10.1007/s00281-017-0629-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bermejo-Martin JF, Ortiz de Lejarazu R, Pumarola T, Rello J, Almansa R, Ramirez P, Martin-Loeches I, Varillas D, Gallegos MC, Seron C, et al. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit Care. 2009;13:R201. https://doi.org/10.1186/cc8208.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol. 2016;12:259–68. https://doi.org/10.1038/nrrheum.2015.179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Esfandiarei M, McManus BM. Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol. 2008;3:127–55. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151534.

    Article  CAS  PubMed  Google Scholar 

  63. Cooper DJ. Myocarditis. N Engl J Med. 2009;

    Google Scholar 

  64. Fung G, Luo H, Qiu Y, Yang D, McManus B. Myocarditis. Circ Res. 2016;118:496–514. https://doi.org/10.1161/circresaha.115.306573.

    Article  CAS  PubMed  Google Scholar 

  65. Koonin EV, Wolf YI, Nagasaki K, Dolja VV. The big bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol. 2008;6:925–39. https://doi.org/10.1038/nrmicro2030.

    Article  CAS  PubMed  Google Scholar 

  66. Bowles NE, Rose ML, Taylor P, Banner NR, Morgan-Capner P, Cunningham L, Archard LC, Yacoub MH. End-stage dilated cardiomyopathy. Persistence of enterovirus RNA in myocardium at cardiac transplantation and lack of immune response. Circulation. 1989;80:1128–36. https://doi.org/10.1161/01.Cir.80.5.1128.

    Article  CAS  PubMed  Google Scholar 

  67. Pankuweit S, Klingel K. Viral myocarditis: from experimental models to molecular diagnosis in patients. Heart Fail Rev. 2012;18:683–702. https://doi.org/10.1007/s10741-012-9357-4.

    Article  CAS  Google Scholar 

  68. Lee J, Choi EH, Lee HJ. Comprehensive serotyping and epidemiology of human adenovirus isolated from the respiratory tract of Korean children over 17 consecutive years (1991-2007). J Med Virol. 2010;82:624–31. https://doi.org/10.1002/jmv.21701.

    Article  CAS  PubMed  Google Scholar 

  69. Gallinella G, Zuffi E, Gentilomi G, Manaresi E, Venturoli S, Bonvicini F, Cricca M, Zerbini M, Musiani M. Relevance of B19 markers in serum samples for a diagnosis of parvovirus B19-correlated diseases. J Med Virol. 2003;71:135–9. https://doi.org/10.1002/jmv.10452.

    Article  CAS  PubMed  Google Scholar 

  70. Ablashi D, Agut H, Alvarez-Lafuente R, Clark DA, Dewhurst S, DiLuca D, Flamand L, Frenkel N, Gallo R, Gompels UA, et al. Classification of HHV-6A and HHV-6B as distinct viruses. Arch Virol. 2014;159:863–70. https://doi.org/10.1007/s00705-013-1902-5.

    Article  CAS  PubMed  Google Scholar 

  71. Hang W, Chen C, Seubert JM, Wang DW. Fulminant myocarditis: a comprehensive review from etiology to treatments and outcomes. Signal Transduct Target Ther. 2020;5:287. https://doi.org/10.1038/s41392-020-00360-y.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–62. https://doi.org/10.1016/s0140-6736(20)30566-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–9. https://doi.org/10.1001/jama.2020.1585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5:811–8. https://doi.org/10.1001/jamacardio.2020.1017.

    Article  PubMed  Google Scholar 

  75. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zeng JH, Liu YX, Yuan J, Wang FX, Wu WB, Li JX, Wang LF, Gao H, Wang Y, Dong CF, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020; https://doi.org/10.1007/s15010-020-01424-5.

  77. Garot J, Amour J, Pezel T, Dermoch F, Messadaa K, Felten ML, Raymond V, Baubillier E, Sanguineti F, Garot P. SARS-CoV-2 fulminant myocarditis. JACC Case Rep. 2020;2:1342–6. https://doi.org/10.1016/j.jaccas.2020.05.060.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kesici S, Aykan HH, Orhan D, Bayrakci B. Fulminant COVID-19-related myocarditis in an infant. Eur Heart J. 2020;41:3021. https://doi.org/10.1093/eurheartj/ehaa515.

    Article  CAS  PubMed  Google Scholar 

  79. Lindner D, Fitzek A, Brauninger H, Aleshcheva G, Edler C, Meissner K, Scherschel K, Kirchhof P, Escher F, Schultheiss HP, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5:1281–5. https://doi.org/10.1001/jamacardio.2020.3551.

    Article  PubMed  Google Scholar 

  80. Kawakami R, Sakamoto A, Kawai K, Gianatti A, Pellegrini D, Nasr A, Kutys B, Guo L, Cornelissen A, Mori M, et al. Pathological evidence for SARS-CoV-2 as a cause of myocarditis: JACC review topic of the week. J Am Coll Cardiol. 2021;77:314–25. https://doi.org/10.1016/j.jacc.2020.11.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Chen or Dao Wen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, C., Wang, D.W. (2022). Etiology and Pathogenesis of Fulminant Myocarditis. In: Wang, D.W. (eds) Fulminant Myocarditis. Springer, Singapore. https://doi.org/10.1007/978-981-19-5759-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5759-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5758-1

  • Online ISBN: 978-981-19-5759-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics