Skip to main content

Deep Technologies Using Big Data in: Energy and Waste Management

  • Chapter
  • First Online:
Deep Learning Technologies for the Sustainable Development Goals

Part of the book series: Advanced Technologies and Societal Change ((ATSC))

Abstract

The potential of big data is growing exponentially, and over the next decade, it will almost change every business and industry. The diverse applications of big data have opened new dimensions for industrialization and urbanization. This leads to a huge energy crisis and environmental wastes. The conventional methods are incapable of handling energy crises and wastes. Moreover, the methods require a lot of manpower and resources which make them more costly. Thus, the ultimate solution of handling this computationally expensive and complex issue is by analyzing the demand of energy, classification, and identification of the source of wastes at every step of technological advances. Big data analytics is capable of analyzing these large datasets, still faces major setbacks because of high-dimensional, imbalance, and dynamic datasets. These difficulties lead to various other problems, such as search-based data analytics problems, multi-objective optimization problems, uncertain data problems, and classification and clustering problems. To address these issues, various data analytics tools and statistical techniques were designed by the researchers; but, the literature shows strong evidence that deep learning techniques are efficient in solving these complex and computationally expensive problems very well. This chapter attempts to exploit deep learning techniques to solve energy and waste management issues through big data analytics. Finally, the chapter concludes with the discussion and prospects of deep learning in big data analytics for energy and waste management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. https://www.statista.com/statistics/871513/worldwide-data-created/. Last accessed on 2021/7/3

  2. Directive, E.C.: Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Official J. Eur. Union L 312(3) (2008)

    Google Scholar 

  3. https://www.itu.int/en/ITU-D/Environment/Pages/Spotlight/Global-Ewaste-Monitor-2020.aspx

  4. Benson, N.U., Bassey, D.E., Palanisami, T.: COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint. Heliyon 7(2), e06343 (2021)

    Article  Google Scholar 

  5. Raina, R., Madhavan, A., Ng, A.Y.: Large-scale deep unsupervised learning using graphics processors. In Proceedings of the 26th Annual International Conference on Machine Learning, pp. 873–880 (2009)

    Google Scholar 

  6. Cireşan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple neural nets for handwritten digit recognition. Neural Comput. 22(12), 3207–3220 (2010)

    Article  Google Scholar 

  7. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(1), 30–42 (2011)

    Article  Google Scholar 

  8. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  9. Deng, L., Yu, D., Platt, J.: Scalable stacking and learning for building deep architectures. In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2133–2136. IEEE (2012)

    Google Scholar 

  10. Saha, B., Srivastava, D.: Data quality: the other face of big data. In: IEEE 30th International Conference on Data Engineering, pp. 1294–1297. IEEE (2014)

    Google Scholar 

  11. Becker, D., King, T.D., McMullen, B.: Big data, big data quality problem. In: IEEE International Conference on Big Data (Big Data), pp. 2644–2653. IEEE (2015)

    Google Scholar 

  12. Li, W., Xu, S., Peng, X.: Research on comprehensive evaluation of data source quality in big data environment. Int. J. Comput. Intell. Syst. (2021)

    Google Scholar 

  13. Srivastava, N., Salakhutdinov, R.: Multimodal learning with deep Boltzmann machines. In: NIPS, vol. 1, p. 2 (2012)

    Google Scholar 

  14. Ouyang, W., Chu, X., Wang, X.: Multi-source deep learning for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2329–2336 (2014)

    Google Scholar 

  15. Zhao, L., Hu, Q., Wang, W.: Heterogeneous feature selection with multi-modal deep neural networks and sparse group LASSO. IEEE Trans. Multimedia 17(11), 1936–1948 (2015)

    Article  Google Scholar 

  16. Venugopalan, J., Tong, L., Hassanzadeh, H.R., Wang, M.D.: Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci. Rep. 11(1), 1–13 (2021)

    Article  Google Scholar 

  17. Liu, D., Chen, L., Wang, Z., Diao, G.: Speech expression multimodal emotion recognition based on deep belief network. J. Grid Comput. 19(2), 1–13 (2021)

    Article  Google Scholar 

  18. Li, H., Huang, J., Huang, J., Chai, S., Zhao, L., Xia, Y.: Deep multimodal learning and fusion based intelligent fault diagnosis approach. J. Beijing Inst. Technol. 30(2), 172–185 (2021)

    Google Scholar 

  19. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1096–1103 (2008)

    Google Scholar 

  20. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010)

    Google Scholar 

  21. Li, R., Gao, H.: Denoising and feature extraction of weld seam profiles by stacked denoising autoencoder. Weld World 1–9 (2021)

    Google Scholar 

  22. Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neural networks on CPUs (2011)

    Google Scholar 

  23. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  24. Farabet, C., LeCun, Y., Kavukcuoglu, K., Culurciello, E., Martini, B., Akselrod, P., Talay, S.: Large-scale FPGA-based convolutional networks. In: Scaling up Machine Learning: Parallel and Distributed Approaches, vol. 13, no. 3, pp. 399–419 (2011)

    Google Scholar 

  25. Qiu, C., Wang, X.A., Zhao, T., Li, Q., Wang, B., Wang, H.: An FPGA-based convolutional neural network coprocessor. Wireless Commun. Mobile Comput. 2021 (2021)

    Google Scholar 

  26. Yoo, J., Lee, D., Son, C., Jung, S., Yoo, B., Choi, C., et al.: RaScaNet: learning tiny models by raster-scanning images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13673–13682 (2021)

    Google Scholar 

  27. Shehzad, F., Rashid, M., Sinky, M.H., Alotaibi, S.S., Zia, M.Y.I.: A scalable system-on-chip acceleration for deep neural networks. IEEE Access (2021)

    Google Scholar 

  28. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019)

    Article  Google Scholar 

  29. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 1891–1898 (2014)

    Google Scholar 

  30. Hassan, A., Mahmood, A.: Convolutional recurrent deep learning model for sentence classification. IEEE Access 6, 13949–13957 (2018)

    Article  Google Scholar 

  31. Lakshmanaprabu, S.K., Mohanty, S.N., Shankar, K., Arunkumar, N., Ramirez, G.: Optimal deep learning model for classification of lung cancer on CT images. Futur. Gener. Comput. Syst. 92, 374–382 (2019)

    Article  Google Scholar 

  32. Pye, M., McKane, A.: Making a stronger case for industrial energy efficiency by quantifying non-energy benefits. Resour. Conserv. Recycl. 28(3–4), 171–183 (2000)

    Article  Google Scholar 

  33. Bunse, K., Vodicka, M., Schönsleben, P., Brülhart, M., Ernst, F.O.: Integrating energy efficiency performance in production management–gap analysis between industrial needs and scientific literature. J. Clean. Prod. 19(6–7), 667–679 (2011)

    Article  Google Scholar 

  34. Conticelli, E., Proli, S., Tondelli, S.: Integrating energy efficiency and urban densification policies: two Italian case studies. Energy Build. 155, 308–323 (2017)

    Article  Google Scholar 

  35. Cagno, E., Neri, A., Trianni, A.: Broadening to sustainability the perspective of industrial decision-makers on the energy efficiency measures adoption: some empirical evidence. Energ. Effi. 11(5), 1193–1210 (2018)

    Article  Google Scholar 

  36. Bin Abdulwahed, F.F.A.: The hidden benefits of energy efficiency: quantifying the impact of non-energy benefits when energy efficiency measures are implemented in the EU Iron and steel industry (Master’s thesis) (2021)

    Google Scholar 

  37. Introna, V., Cesarotti, V., Benedetti, M., Biagiotti, S., Rotunno, R.: Energy management maturity model: an organizational tool to foster the continuous reduction of energy consumption in companies. J. Clean. Prod. 83, 108–117 (2014)

    Article  Google Scholar 

  38. Antunes, P., Carreira, P., da Silva, M.M.: Towards an energy management maturity model. Energy Policy 73, 803–814 (2014)

    Article  Google Scholar 

  39. Sola, A.V., Mota, C.M.: Influencing factors on energy management in industries. J. Clean. Prod. 248, 119263 (2020)

    Article  Google Scholar 

  40. GigaOM, 10 ways big data is remaking energy. https://gigaom.com/2012/01/29/10-ways-big-data-is-remaking-energy/

  41. Voivontas, D., Assimacopoulos, D., Mourelatos, A., Corominas, J.: Evaluation of renewable energy potential using a GIS decision support system. Renewable Energy 13(3), 333–344 (1998)

    Article  Google Scholar 

  42. Jakubiec, J.A., Reinhart, C.F.: A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Sol. Energy 93, 127–143 (2013)

    Article  Google Scholar 

  43. Feng, J., Feng, L., Wang, J., King, C.W.: Evaluation of the onshore wind energy potential in mainland China—based on GIS modeling and EROI analysis. Resour. Conserv. Recycl. 152, 104484 (2020)

    Article  Google Scholar 

  44. Ferla, G., Caputo, P., Colaninno, N., Morello, E.: Urban greenery management and energy planning: a GIS-based potential evaluation of pruning by-products for energy application for the city of Milan. Renewable Energy 160, 185–195 (2020)

    Article  Google Scholar 

  45. Parent, C., Spaccapietra, S.: Issues and approaches of database integration. Commun. ACM 41(5es), 166–178 (1998)

    Google Scholar 

  46. Devogele, T., Parent, C., Spaccapietra, S.: On spatial database integration. Int. J. Geogr. Inf. Sci. 12(4), 335–352 (1998)

    Article  Google Scholar 

  47. Stencel, K.: A data model for heterogeneous data integration architecture

    Google Scholar 

  48. Hasan, F.F., Bakar, M.S.A.: An approach for data transformation in homogeneous and heterogeneous information systems. In: 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1–5. IEEE (2021)

    Google Scholar 

  49. Mhammedi, S., Gherabi, N.: Heterogeneous integration of big data using semantic web technologies. In: Intelligent Systems in Big Data, Semantic Web and Machine Learning, pp. 167–177. Springer, Cham (2021)

    Google Scholar 

  50. Bevilacqua, M., Ciarapica, F.E., Diamantini, C., Potena, D.: Big data analytics methodologies applied at energy management in industrial sector: a case study. Int. J. RF Technol. 8(3), 105–122 (2017)

    Article  Google Scholar 

  51. Tian, Y., Yu, J., Zhao, A.: Predictive model of energy consumption for office building by using improved GWO-BP. Energy Rep. 6, 620–627 (2020)

    Article  Google Scholar 

  52. Kumar, M., Shenbagaraman, V.M., Shaw, R.N., Ghosh, A.: Predictive data analysis for energy management of a smart factory leading to sustainability. In: Innovations in Electrical and Electronic Engineering, pp. 765–773. Springer, Singapore (2021)

    Google Scholar 

  53. Ozer, G., Garg, S., Davoudi, N., Poerwawinata, G., Maiterth, M., Netti, A., Tafani, D.: Towards a predictive energy model for HPC runtime systems using supervised learning. In: European Conference on Parallel Processing, pp. 626–638. Springer, Cham (2019)

    Google Scholar 

  54. Thonipara, A., Runst, P., Ochsner, C., Bizer, K.: Energy efficiency of residential buildings in the European Union—an exploratory analysis of cross-country consumption patterns. Energy Policy 129, 1156–1167 (2019)

    Article  Google Scholar 

  55. Sachin, M.M., Baby, M.P., Ponraj, A.S.: Analysis of energy consumption using RNN-LSTM and ARIMA Model. In: J. Phys.: Conf. Ser. 1716(1), 012048 (2020)

    Google Scholar 

  56. Bui-Duy, L., Vu-Thi-Minh, N.: Utilization of a deep learning-based fuel consumption model in choosing a liner shipping route for container ships in Asia. Asian J. Shipping Logistics 37(1), 1–11 (2021)

    Article  Google Scholar 

  57. Hu, K., Wu, J., Schwanen, T.: Differences in energy consumption in electric vehicles: an exploratory real-world study in Beijing. J. Adv. Transp. (2017)

    Google Scholar 

  58. Sun, Y., Wang, S., Zhang, X., Chan, T.O., Wu, W.: Estimating local-scale domestic electricity energy consumption using demographic, nighttime light imagery and Twitter data. Energy 226, 120351 (2021)

    Article  Google Scholar 

  59. Casado-Mansilla, D., Tsolakis, A.C., Borges, C.E., Kamara-Esteban, O., Krinidis, S., Avila, J.M., et al.: Socio-economic effect on ICT-based persuasive interventions towards energy efficiency in tertiary buildings. Energies 13(7), 1700 (2020)

    Article  Google Scholar 

  60. Elakkad, N., Ismaeel, W.S.: Coupling performance-prescriptive based daylighting principles for office buildings: case study from Egypt. Ain Shams Eng. J. (2021)

    Google Scholar 

  61. Amasyali, K., El-Gohary, N.M.: A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 81, 1192–1205 (2018)

    Article  Google Scholar 

  62. Bianco, V., Manca, O., Nardini, S.: Electricity consumption forecasting in Italy using linear regression models. Energy 34(9), 1413–1421 (2009)

    Article  Google Scholar 

  63. Park, D.C., El-Sharkawi, M.A., Marks, R.J., Atlas, L.E., Damborg, M.J.: Electric load forecasting using an artificial neural network. IEEE Trans. Power Syst. 6(2), 442–449 (1991)

    Article  Google Scholar 

  64. Yang, S.L., Shen, C.: A review of electric load classification in smart grid environment. Renew. Sustain. Energy Rev. 24, 103–110 (2013)

    Article  Google Scholar 

  65. Hafeez, G., Alimgeer, K.S., Wadud, Z., Shafiq, Z., Ali Khan, M.U., Khan, I., et al.: A novel accurate and fast converging deep learning-based model for electrical energy consumption forecasting in a smart grid. Energies 13(9), 2244 (2020)

    Article  Google Scholar 

  66. Syed, D., Abu-Rub, H., Ghrayeb, A., Refaat, S.S., Houchati, M., Bouhali, O., Bañales, S.: Deep learning-based short-term load forecasting approach in smart grid with clustering and consumption pattern recognition. IEEE Access 9, 54992–55008 (2021)

    Article  Google Scholar 

  67. Hafeez, G., Alimgeer, K.S., Khan, I.: Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid. Appl. Energy 269, 114915 (2020)

    Article  Google Scholar 

  68. Hong, Y., Zhou, Y., Li, Q., Xu, W., Zheng, X.: A deep learning method for short-term residential load forecasting in smart grid. IEEE Access 8, 55785–55797 (2020)

    Article  Google Scholar 

  69. Borenstein, S.: The long-run efficiency of real-time electricity pricing. Energy J. 26(3) (2005)

    Google Scholar 

  70. Oldewurtel, F., Ulbig, A., Parisio, A., Andersson, G., Morari, M.: Reducing peak electricity demand in building climate control using real-time pricing and model predictive control. In: 49th IEEE Conference on Decision and Control (CDC), pp. 1927–1932. IEEE (2010)

    Google Scholar 

  71. Chao, H.P.: Efficient pricing and investment in electricity markets with intermittent resources. Energy Policy 39(7), 3945–3953 (2011)

    Article  Google Scholar 

  72. Gyamfi, S., Krumdieck, S., Urmee, T.: Residential peak electricity demand response—highlights of some behavioural issues. Renew. Sustain. Energy Rev. 25, 71–77 (2013)

    Article  Google Scholar 

  73. Jiang, T., Cao, Y., Yu, L., Wang, Z.: Load shaping strategy based on energy storage and dynamic pricing in smart grid. IEEE Trans. Smart Grid 5(6), 2868–2876 (2014)

    Article  Google Scholar 

  74. Lu, R., Hong, S.H., Zhang, X.: A dynamic pricing demand response algorithm for smart grid: reinforcement learning approach. Appl. Energy 220, 220–230 (2018)

    Article  Google Scholar 

  75. Mawson, V.J., Hughes, B.R.: Deep learning techniques for energy forecasting and condition monitoring in the manufacturing sector. Energy Build. 217, 109966 (2020)

    Article  Google Scholar 

  76. Jana, R.K., Ghosh, I., Sanyal, M.K.: A granular deep learning approach for predicting energy consumption. Appl. Soft Comput. 89, 106091 (2020)

    Article  Google Scholar 

  77. Qureshi, A.S., Khan, A., Zameer, A., Usman, A.: Wind power prediction using deep neural network based meta regression and transfer learning. Appl. Soft Comput. 58, 742–755 (2017)

    Article  Google Scholar 

  78. Mujeeb, S., Alghamdi, T.A., Ullah, S., Fatima, A., Javaid, N., Saba, T.: Exploiting deep learning for wind power forecasting based on big data analytics. Appl. Sci. 9(20), 4417 (2019)

    Article  Google Scholar 

  79. Zhang, R., Feng, M., Zhang, W., Lu, S., Wang, F.: Forecast of solar energy production—a deep learning approach. In: IEEE International Conference on Big Knowledge (ICBK), pp. 73–82. IEEE (2018)

    Google Scholar 

  80. Almeshaiei, E., Al-Habaibeh, A., Shakmak, B.: Rapid evaluation of micro-scale photovoltaic solar energy systems using empirical methods combined with deep learning neural networks to support systems’ manufacturers. J. Clean. Prod. 244, 118788 (2020)

    Article  Google Scholar 

  81. Dodiya, M., Shah, M.: A systematic study on shaping the future of solar prosumage using deep learning. Int. J. Energy Water Res. 1–11 (2021)

    Google Scholar 

  82. Lu, Y.S., Lai, K.Y.: Deep-learning-based power generation forecasting of thermal energy conversion. Entropy 22(10), 1161 (2020)

    Article  Google Scholar 

  83. Correa-Jullian, C., Cardemil, J.M., Droguett, E.L., Behzad, M.: Assessment of deep learning techniques for prognosis of solar thermal systems. Renewable Energy 145, 2178–2191 (2020)

    Article  Google Scholar 

  84. Lu, Y., Tian, Z., Zhou, R., Liu, W.: Multi-step-ahead prediction of thermal load in regional energy system using deep learning method. Energy Build. 233, 110658 (2021)

    Article  Google Scholar 

  85. Directive, E.C.: 98/EC of the European Parliament and of the Council, on waste and repealing certain Directives. Off. J. Eur. Union 312, 3–30 (2008)

    Google Scholar 

  86. Prasanna, A., Vikash Kaushal, S.: Survey on identification and classification of waste for efficient disposal and recycling. Int. J. Eng. Technol. 7(2.8), 520–523 (2018)

    Google Scholar 

  87. Saeed, M.O., Hassan, M.N., Mujeebu, M.A.: Assessment of municipal solid waste generation and recyclable materials potential in Kuala Lumpur, Malaysia. Waste manage. 29(7), 2209–2213 (2009)

    Article  Google Scholar 

  88. Yuan, H., Shen, L., Wang, J.: Major obstacles to improving the performance of waste management in China’s construction industry. Facilities (2011)

    Google Scholar 

  89. Pattnaik, S., Reddy, M.V.: Assessment of municipal solid waste management in Puducherry (Pondicherry), India. Resour. Conserv. Recycl. 54(8), 512–520 (2010)

    Article  Google Scholar 

  90. Shinde, P.P., Oza, K.S., Kamat, R.K.: Big data predictive analysis: using R analytical tool. In: International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), pp. 839–842. IEEE (2017)

    Google Scholar 

  91. Nowakowski, P., Pamuła, T.: Application of deep learning object classifier to improve e-waste collection planning. Waste Manage. 109, 1–9 (2020)

    Article  Google Scholar 

  92. Ahmad, S., Kim, D.H.: Quantum GIS based descriptive and predictive data analysis for effective planning of waste management. IEEE Access 8, 46193–46205 (2020)

    Article  Google Scholar 

  93. Liang, S., Gu, Y.: A deep convolutional neural network to simultaneously localize and recognize waste types in images. Waste Manage. 126, 247–257 (2021)

    Article  Google Scholar 

  94. Agarwal, H., Ahir, B., Bide, P., Jain, S., Barot, H.: Minimization of food waste in retail sector using time-series analysis and object detection algorithm. In: International Conference for Emerging Technology (INCET), pp 1–7. IEEE (2020)

    Google Scholar 

  95. Rashmi, G.: Regularized noise based GRU model to forecast solid waste generation in the urban region. Turk. J. Comput. Math. Educ. (TURCOMAT) 12(10), 5449–5458 (2021)

    Google Scholar 

  96. Zhang, Q., Zhang, X., Mu, X., Wang, Z., Tian, R., Wang, X., Liu, X.: Recyclable waste image recognition based on deep learning. Resour. Conserv. Recycl. 171, 105636 (2021)

    Article  Google Scholar 

  97. Altikat, A., Gulbe, A., Altikat, S.: Intelligent solid waste classification using deep convolutional neural networks. Int. J. Environ. Sci. Technol. 1–8 (2021)

    Google Scholar 

  98. Agovino, M., Ferrara, M., Garofalo, A.: An exploratory analysis on waste management in Italy: a focus on waste disposed in landfill. Land Use Policy 57, 669–681 (2016)

    Article  Google Scholar 

  99. Knol-Kauffman, M., Solås, A.M., Arbo, P.: Government-industry dynamics in the development of offshore waste management in Norway: from prescriptive to risk-based regulation. J. Environ. Planning Manage. 64(4), 649–670 (2021)

    Article  Google Scholar 

  100. Chu, Y., Huang, C., Xie, X., Tan, B., Kamal, S., Xiong, X.: Multilayer hybrid deep-learning method for waste classification and recycling. Comput. Intell. Neurosci. 2018 (2018)

    Google Scholar 

  101. Sheng, T.J., Islam, M.S., Misran, N., Baharuddin, M.H., Arshad, H., Islam, M.R., et al.: An internet of things based smart waste management system using LoRa and tensorflow deep learning model. IEEE Access 8, 148793–148811 (2020)

    Article  Google Scholar 

  102. Vrancken, C., Longhurst, P., Wagland, S.: Deep learning in material recovery: development of method to create training database. Expert Syst. Appl. 125, 268–280 (2019)

    Article  Google Scholar 

  103. Cubillos, M.: Multi-site household waste generation forecasting using a deep learning approach. Waste Manage. 115, 8–14 (2020)

    Article  Google Scholar 

  104. Niska, H., Serkkola, A.: Data analytics approach to create waste generation profiles for waste management and collection. Waste Manage. 77, 477–485 (2018)

    Article  Google Scholar 

  105. Vafeiadis, T., Nizamis, A., Pavlopoulos, V., Giugliano, L., Rousopoulou, V., Ioannidis, D., Tzovaras, D.: Data analytics platform for the optimization of waste management procedures. In 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 333–338. IEEE (2019)

    Google Scholar 

  106. Xia, M., Li, T., Xu, L., Liu, L., De Silva, C.W.: Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Trans. Mechatron. 23(1), 101–110 (2017)

    Article  Google Scholar 

  107. Massaoudi, M., Abu-Rub, H., Refaat, S.S., Chihi, I., Oueslati, F.S.: Deep learning in smart grid technology: a review of recent advancements and future prospects. IEEE Access 9, 54558–54578 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsna Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, J. (2023). Deep Technologies Using Big Data in: Energy and Waste Management. In: Kadyan, V., Singh, T.P., Ugwu, C. (eds) Deep Learning Technologies for the Sustainable Development Goals. Advanced Technologies and Societal Change. Springer, Singapore. https://doi.org/10.1007/978-981-19-5723-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5723-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5722-2

  • Online ISBN: 978-981-19-5723-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics