Skip to main content

Explicit Evolutionary Multi-Task Optimization Algorithm

  • Chapter
  • First Online:
Evolutionary Multi-Task Optimization
  • 417 Accesses

Abstract

Despite the success enjoyed by the EMT search paradigm, it is worth noting that the implicit EMT algorithms introduced in Chaps. 3 and 4 are designed based on the unified solution representation, and the knowledge sharing across tasks for problem-solving is realized by the implicit genetic transfer in chromosomal crossover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We do not use unified representation for all the tasks as in [19]. Each task uses its own solution representation. For example, suppose we are given two tasks, i.e., one is 50 dimension Ackley function, while the other is 100 dimension Sphere function. Then the real coded solutions with 100 and 50 dimension are used for Ackley and Sphere, respectively.

  2. 2.

    Note that p and q may have different dimensions, and we pad p or q with zeros to make both problems be of equal dimensionality.

  3. 3.

    The inter-task similarity is defined based on the Pearson correlation [136]. A higher value denotes greater similarity between tasks.

  4. 4.

    The inter-task similarity is defined based on the Pearson correlation [137]. A higher value denotes greater similarity between tasks.

  5. 5.

    D is the dimensionality of the encoded solution. For MOMFEA, it is the dimensionality of the unified code representation.

References

  1. A. Gupta, Y.S. Ong, L. Feng, Multifactorial evolution: toward evolutionary multitasking. IEEE Trans. Evolut. Comput. 20(3), 343–357 (2016)

    Article  Google Scholar 

  2. A. Gupta, Y.S. Ong, L. Feng, K.C. Tan, Multi-objective multifactorial optimization in evolutionary multitasking. IEEE Trans. Cybernet. 47(7), 1652–1665 (2017)

    Article  Google Scholar 

  3. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. B. Da, Y.S. Ong, L. Feng, A.K. Qin, A. Gupta, Z. Zhu, C.K. Ting, K. Tang, X. Yao, Evolutionary multitasking for single-objective continuous optimization: benchmark problems, performance metric, and baseline results. Preprint. arXiv:1706.03470 (2017)

    Google Scholar 

  5. Y. Yuan, Y.S. Ong, L. Feng, A.K. Qin, A. Gupta, B. Da, Q. Zhang, K.C. Tan, Y. Jin, H. Ishibuchi, Evolutionary multitasking for multiobjective continuous optimization: Benchmark problems, performance metrics and baseline results (2017). Preprint. arXiv:1706.02766

    Google Scholar 

  6. M. Iqbal, B. Xue, H.A.-Sahaf, M. Zhang, Cross-domain reuse of extracted knowledge in genetic programming for image classification. IEEE Trans. Evolut. Comput. 21(4), 569–587 (2017)

    Google Scholar 

  7. D. O’Neill, H.A.-Sahaf, B. Xue, M. Zhang, Common subtrees in related problems: a novel transfer learning approach for genetic programming. Proceedings of 2017 IEEE Congress on Evolutionary Computation (CEC 2017), 2017, pp. 1287–1294

    Google Scholar 

  8. L.J. Eshelman, R. Caruana, J.D. Schaffer, Biases in the crossover landscape, in Proceedings of the 3rd International Conference on Genetic Algorithms, 1989, pp. 10–19

    Google Scholar 

  9. K.F. Man, K.S. Tang, S. Kwong, Genetic algorithms: concepts and applications [in engineering design]. IEEE Trans. Ind. Electron. 43(5), 519–534 (1996)

    Article  Google Scholar 

  10. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016) http://www.deeplearningbook.org

    MATH  Google Scholar 

  11. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS’12 (2012), pp. 1097–1105

    Google Scholar 

  12. A. Bordes, X. Glorot, J. Weston, Y. Bengio, Joint learning of words and meaning representations for open-text semantic parsing, in International Conference on Artificial Intelligence and Statistics, 2012, pp. 127–135

    Google Scholar 

  13. X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: A deep learning approach, in Proceedings of the Twenty-eight International Conference on Machine Learning, ICML’11, 2011, pp. 97–110

    Google Scholar 

  14. L. Feng, Y.S. Ong, S. Jiang, A. Gupta, Autoencoding evolutionary search with learning across heterogeneous problems. IEEE Trans. Evolut. Comput. (in press, 2017)

    Google Scholar 

  15. A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, J. Schmidhuber, A novel connectionist system for unconstrained handwriting recognition. IEEE Trans. Patt. Anal. Mach. Intell. 31(5), 855–868 (2009)

    Article  Google Scholar 

  16. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.A. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  17. C. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006)

    MATH  Google Scholar 

  18. M. Potter, K. De Jong, Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)

    Article  Google Scholar 

  19. R.B. Agrawal, K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  20. R. Storn, K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Zitzler, M. Laumanns, L. Thiele, Spea2: improving the strength pareto evolutionary algorithm, in Proceedings of Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN), pp. 95–100 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, L., Gupta, A., Tan, K., Ong, Y. (2023). Explicit Evolutionary Multi-Task Optimization Algorithm. In: Evolutionary Multi-Task Optimization. Machine Learning: Foundations, Methodologies, and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-5650-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5650-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5649-2

  • Online ISBN: 978-981-19-5650-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics