Skip to main content

Tree Plantation: A Silver Bullet to Achieve Carbon Neutrality?

  • Chapter
  • First Online:
Land Degradation Neutrality: Achieving SDG 15 by Forest Management

Abstract

Rising global atmospheric carbon dioxide (CO2) concentrations has been a major driver of global climate change. In response, several parties to the Paris Agreement have pledged to achieve “carbon neutrality” where CO2 emissions are balanced by various CO2 removal activities. Sequestration of atmospheric CO2 by trees and locking it in different pools (live biomass, detritus, wood products and soil) is widely seen as an easy, cost-effective strategy that would lead to carbon neutrality. Together with attractive carbon incentives, this strategy has led to the mushrooming of several tree plantation projects all over the world. The carbon sequestration potential of a plantation depends upon several factors like species planted, site history, climate, and management practices. While well-planned tree plantations would enable the harvesting of environmental and socioeconomic benefits, ill-conceived tree planting initiatives may turn into an environmental disaster. Prior risk assessments and adoption of an integrated approach in tree plantations would help in reducing the uncertainties and achieving the desired targets. Diversified climate action plans which also include tree plantation as an integral component are necessary to achieve carbon neutrality and climate change mitigation goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajit, Dhyani SK, Newaj R, Handa AK, Prasad R, Alam B, Rizvi RH, Gupta G, Pandey KK, Jain A, Uma (2013) Modeling analysis of potential carbon sequestration under existing agroforestry systems in three districts of Indo-Gangetic plains in India. Agrofor Syst 87:1129–1146

    Article  Google Scholar 

  • Altieri MA, Nicholls CI, Henao A, Lana MA (2015) Agroecology and the design of climate change-resilient farming systems. Agron Sust Dev 35(3):869–890

    Article  Google Scholar 

  • Amarasinghe WVTD, Terada T, Yamamoto H (2021) Enhancing the carbon sequestration of high-elevation Eucalyptus plantations in Sri Lanka for future carbon market activities. J For Res 26(5):351–357

    Article  CAS  Google Scholar 

  • Anderegg WR, Kane JM, Anderegg LD (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Chang 3:30–36

    Article  Google Scholar 

  • Arora G, Chaturvedi S, Kaushal R, Nain A, Tewari S, Alam NM, Chaturvedi OP (2014) Growth, biomass, carbon stocks, and sequestration in an age series of Populus deltoides plantations in Tarai region of central Himalaya. Turkish J Agric For 38(4):550–560

    Article  CAS  Google Scholar 

  • Arora P, Chaudhry S (2014) Carbon Sequestration in Tree Plantations at Kurukshetra in Northern India. Am Int J Res Formal Appl Nat Sci 5(1):65–70

    Google Scholar 

  • Avtar R, Suzuki R, Sawada H (2014) Naturalforest biomass estimation based on plantation information using PALSAR data. PLoS One 9:e86121

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayers JM, Huq S (2009) The value of linking mitigation and adaptation: a case study of Bangladesh. Environ Manag 43:753–764

    Article  Google Scholar 

  • Bastin JF, Finegold Y, Garcia C, Mollicone D, Rezende M, Routh D, Zohner CM, Crowther TW (2019) The global tree restoration potential. Science 365(6448):76–79

    Article  CAS  PubMed  Google Scholar 

  • Bayen P, Bognounou F, Lykke AM, Ouédraogo M, Thiombiano A (2016) The use of biomass production and allometric models to estimate carbon sequestration of Jatropha curcas L. plantations in western Burkina Faso. Environ Dev Sustain 18(1):143–156

    Article  Google Scholar 

  • Behera L, Ray LI, Ranjan Nayak M, Mehta A (2020) Carbon sequestration potential of Eucalyptus spp.: A review. E-Planet 18(1):79–84

    Google Scholar 

  • Behera MK, Mohapatra NP (2015) Biomass Accumulation and Carbon Stocks in 13 Different Clones of Teak (Tectona grandis Linn. F.) in Odisha, India. Curr World Environ 10(3):1011

    Article  Google Scholar 

  • Böttcher H, Lindner M (2010) Managing forest plantations for carbon sequestration today and in the future. In: Bauhus J, van der Meer PJ, Kanninen M (eds) Ecosystem Goods and Services from Plantation Forests. Earth Scan Limited, London

    Google Scholar 

  • Brahma B, Nath AJ, Das AK (2016) Managing rubber plantations for advancing climate change mitigation strategy. Curr Sci 25:2015–2019

    Article  Google Scholar 

  • Brancalion PHS, Campoe O, Mendes JCT, Noel C, Moreira GG, van Melis J, Stape JL, Guillemot J (2019, 1847) Intensive silviculture enhances biomass accumulation and tree diversity recovery in tropical forest restoration. Ecol Appl 29(2)

    Google Scholar 

  • Brown HCA, Berninger FA, Larjavaara M, Appiah M (2020) Above-ground carbon stocks and timber value of old timber plantations, secondary and primary forests in southern Ghana. For Ecol Manag 472:118236

    Article  Google Scholar 

  • Campoe OC, Stape JL, Mendes JCT (2010) Can intensive management accelerate the restoration of Brazil’s Atlantic forests? For Ecol Manag 259:1808–1814

    Article  Google Scholar 

  • Chaturvedi AN (1994) Sequestration of atmospheric carbon in India’s forests. Ambio 23:460–461

    Google Scholar 

  • Chauhan SK, Ritu, Chauhan R (2016) Carbon sequestration in plantations. In: Gupta SK, Panwar P, Kaushal R (eds) Agroforestry for increased production and livelihood security. New India Publishing Agency, New Delhi

    Google Scholar 

  • Chayaporn P, Sasaki N, Venkatappa M, Abe I (2021) Assessment of the overall carbon storage in a teak plantation in Kanchanaburi province, Thailand – Implications for carbon-based incentives. Clean Environ Syst 2:100023

    Article  Google Scholar 

  • Chen HS, Shao MA, Li YY (2008) Soil desiccation in the Loess Plateau of China. Geoderma 143:91–100

    Article  Google Scholar 

  • Chen LC, Wang H, Yu X, Zhang WD, Lu XT, Wang SL (2017) Recovery time of soil carbon pools of conversional Chinese Fir plantations from broadleaved forests in subtropical regions. China Sci Total Environ 587:296–304

    Article  PubMed  Google Scholar 

  • Cheng J, Lee X, Theng BKG, Zhang L, Fang B, Li F (2015) Biomass accumulation and carbon sequestration in an age-sequence of Zanthoxylum bungeanum plantations under the Grain for Green Program in Karst regions, Guizhou province. Agric For Meteorol 203:88–95

    Article  Google Scholar 

  • Cotter M, Martin K, Sauerborn J (2009) How do “Renewable Products” impact biodiversity and ecosystem services—the example of natural rubber in China. J Agr Rural Dev Trop 110:9–22

    Google Scholar 

  • Cox LE, York RA, Battles JJ (2021) Growth and form of giant sequoia (Sequoiadendron giganteum) in a plantation spacing trial after 28 years. For Ecol Manag 488:119033

    Article  Google Scholar 

  • Dabas M, Bhatia S (1996) Carbon of Role Afforestation : through Sequestration Plantations Industrial Tropical. Ambio 25(5):327–330

    Google Scholar 

  • Dabi H, Bordoloi R, Das B, Paul A, Tripathi OP, Mishra BP (2021) Biomass, carbon stock and soil physicochemical properties in plantation of East Siang district, Arunachal Pradesh. India Environ Challenges 4:100191

    Article  CAS  Google Scholar 

  • Dahik CQ, Crespo P, Stimm B, Mosandl R, Cueva J, Hildebrandt P, Weber M (2021) Impacts of pine plantations on carbon stocks of páramo sites in southern Ecuador. Carbon Bal Manag 16:5

    Article  Google Scholar 

  • Dangal SP, Das AK, Paudel SK (2017) Effectiveness of management interventions on forest carbon stock in planted forests in Nepal. J Environ Manag 196:511–517

    Article  Google Scholar 

  • Das M, Chandra Nath P, Sileshi GW, Pandey R, Nath AJ, Das AK (2021) Biomass models for estimating carbon storage in Areca palm plantations. Environ Sustain Indic 10:100115

    Article  Google Scholar 

  • Devi AS, Singh KS (2021) Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Sci Rep 11:837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewar RC, Cannell MG (1992) Carbon sequestration in the trees, products and soils of forest plantations: an analysis using UK examples. Tree Physiol 11(1):49–71

    Article  CAS  PubMed  Google Scholar 

  • Di Sacco A, Hardwick KA, Blakesley D, Brancalion PHS, Breman E, Cecilio Rebola L, Chomba S, Dixon K, Elliott S, Ruyonga G, Shaw K, Smith P, Smith RJ, Antonelli A (2021) Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob Chang Biol 27(7):1328–1348

    Article  PubMed  Google Scholar 

  • Diaz S, Wardle DA, Hector A (2009) Incorporating biodiversity in climate change mitigation initiatives. In: Naeem S, Bunker DE, Hector A, Moreau M, Perrings C (eds) Biodiversity, ecosystem functioning, and human wellbeing: an ecological and economic perspective. Oxford University Press, Oxford

    Google Scholar 

  • Eriksson E, Gillespie AR, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J (2007) Integrated carbon analysis of forest management practices and wood substitution. Can J For Res 37:671–681

    Article  CAS  Google Scholar 

  • Erkan N, Aydin AC (2016) Effects of spacing on early growth rate and carbon sequestration in Pinus brutia Ten. Plantations For Syst 25(2):e064

    Google Scholar 

  • Ewel JJ, Mazzarino MJ, Berish CW (1991) Tropical soil fertility changes under monocultures and successional communities of different structure. Ecol Appl 1:289–302

    Article  PubMed  Google Scholar 

  • Farooqi TJA, Li X, Yu Z, Liu S, Sun OJ (2021) Reconciliation of research on forest carbon sequestration and water conservation. J For Res 32(1):7–14

    Article  CAS  Google Scholar 

  • Feng X, Fu B, Piao S, Wang S, Ciais P, Zeng Z, Lü Y, Zeng Y, Li Y, Jiang X, Wu B (2016) Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat Clim Chang 6(11):1019–1022

    Article  Google Scholar 

  • Food and Agriculture Organization (FAO) (2020) Global Forest Resources Assessment 2020. FAO, Rome

    Google Scholar 

  • Friggens NL, Hester AJ, Mitchell RJ, Parker TC, Subke JA, Wookey PA (2020) Tree planting in organic soils does not result in net carbon sequestration on decadal timescales. Glob Chang Biol 26(9):5178–5188

    Article  PubMed  Google Scholar 

  • Gao X, Li H, Zhao X, Ma W, Wu P (2018) Identifying a suitable revegetation technique for soil restoration on water-limited and degraded land: Considering both deep soil moisture deficit and soil organic carbon sequestration. Geoderma 319(26):61–69

    Article  CAS  Google Scholar 

  • Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, Zaks D (2008) Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett 3:034001

    Article  Google Scholar 

  • Gong C, Tan Q, Liu G, Xu M (2021) Mixed-species plantations enhance soil carbon stocks on the loess plateau of China. Plant Soil 464(1–2):13–28

    Article  CAS  Google Scholar 

  • Gopalakrishna T, Lomax G, Aguirre-Gutiérrez J, Bauman D, Roy PS, Joshi PK, Malhi Y (2022) Existing land uses constrain climate change mitigation potential of forest restoration in India. Conserv Lett 15:e12867

    Article  Google Scholar 

  • Griscom BW, Adams J, Ellis PW et al (2017) Natural climate solutions. Proc Nat Acad Sci 114(44):11645–11650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedes BS, Olsson BA, Egnell G, Sitoe AA, Karltun E (2018) Plantations of Pinus and Eucalyptus replacing degraded mountain Miombo woodlands in Mozambique significantly increase carbon sequestration. Glob Ecol Conserv 14:e00401

    Article  Google Scholar 

  • Güner ŞT, Güner D (2021) Changes in carbon stocks of soil and forest floor in black pine plantations in Turkey. J For Res 32(1):339–347

    Article  Google Scholar 

  • Hamilton K, Chokkalingam U, Bendana M (2010) State of the forest Carbon markets 2009: taking root and branching out. Forest Trends, Washington, DC

    Google Scholar 

  • Harrington TB, Harrington CA, DeBell DS (2009) Effects of planting spacing and site quality on 25-year growth and mortality relationships of Douglas-fir (Pseudotsuga menziesii var. menziesii). For Ecol Manag 258:12–25

    Article  Google Scholar 

  • He Y, Qin L, Li Z, Liang X, Shao M, Tan L (2013) Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For Ecol Manag 295:193–198

    Article  Google Scholar 

  • Holl KD, Brancalion PHS (2020) Tree planting is not a simple solution. Science 368(6491):580–581

    Article  CAS  PubMed  Google Scholar 

  • Hoque MZ, Cui S, Islam I, Xu L, Ding S (2021) Dynamics of plantation forest development and ecosystem carbon storage change in coastal Bangladesh. Ecol Indic 130:107954

    Article  CAS  Google Scholar 

  • Houghton RA (2005) Aboveground forest biomass and the global carbon balance. Glob Change Biol 11:945–958

    Article  Google Scholar 

  • Ibarr MA, Zanatta JA, Dieckow J, Rachwal MFG, Ribeiro RH, Cardoso DJ, Ramalho B, Stahl J (2022) Changes in soil carbon and nitrogen stocks after conversion of subtropical natural forest to loblolly pine plantations. Eur J For Res 141(1):31–42

    Article  CAS  Google Scholar 

  • Iovino F, Iovino F, Nicolaci A, Marziliano PA, Pignataro F, Sanesi G (2021) Lessons learned from the past: forestry initiatives for effective carbon stocking in Southern Italy. Ann Silvic Res 46(2):99–111

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2018) In: Delmotte et al (eds) Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. World Meteorological Organization, Geneva

    Google Scholar 

  • Jackson RB, Jobbágy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, Farley KA, Le Maitre DC, McCarl BA, Murray BC (2005) Atmospheric science: trading water for carbon with biological carbon sequestration. Science 310(5756):1944–1947

    Article  CAS  PubMed  Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268

    Article  CAS  Google Scholar 

  • Jasinevičius G, Lindner M, Pingoud K, Tykkylainen M (2015) Review of models for carbon accounting in harvested wood products. Int Wood Prod J 6(4):198–212

    Article  Google Scholar 

  • Jimenez MN, Navarro FB (2016) Thinning effects on litter fall remaining after 8 years and improved stand resilience in Aleppo pine afforestation (SE Spain). J Environ Manag 169:174–183

    Article  CAS  Google Scholar 

  • Jinadari WM, Weerakkody WJSK, Amarasinghe WVTD, Muthumala CK (2021) Above Ground Carbon Stock Estimation of Intermediate Zone Teak (Tectona grandis) grown in Sri Lanka. Proc Open Univ Res Sess 11:49

    Google Scholar 

  • Justine MF, Yang W, Wu F, Khan MN (2017) Dynamics of biomass and carbon sequestration across a chronosequence of Masson pine plantations. J Geophys Res Biogeosci 122(3):578–591

    Article  CAS  Google Scholar 

  • Kaipainen T, Liski J, Pussinen A, Karjalainen T (2004) Managing carbon sinks by changing rotation length in European forests. Environ Sci Pol 7:205–219

    Article  CAS  Google Scholar 

  • Kanime N, Kaushal R, Tewari SK, Raverkar KP, Chaturvedi S, Chaturvedi OP (2013) Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For Trees Livelihoods 22(1):38–50

    Article  Google Scholar 

  • Kanninen M (2010) Plantation forests: global perspectives. In: Bauhus J, van der Meer PJ, Kanninen M (eds) Ecosystem goods and services from plantation forests. Earth scan Limited, London

    Google Scholar 

  • Kaushal R, Subbulakshmi V, Tomar JM, Alam NM, Jayaparkash J, Mehta H, Chaturvedi OP (2016) Predictive models for biomass and carbon stock estimation in male bamboo (Dendrocalamus strictus L.) in Doon valley, India. Acta Ecol Sin 36(6):469–476

    Article  Google Scholar 

  • Kendie G, Addisu S, Abiyu A (2019) Biomass and soil carbon stocks in different forest types, Northwestern Ethiopia. Int J River Basin Manag 19(1):123–129

    Article  Google Scholar 

  • Kenzo T, Himmapan W, Yoneda R, Tedsorn N, Vacharangkura T, Hitsuma G, Noda I (2020) General estimation models for above- and below-ground biomass of teak (Tectona grandis) plantations in Thailand. For Ecol Manag 457:117701

    Article  Google Scholar 

  • Kongsager R, Napier J, Mertz O (2013) The carbon sequestration potential of tree crop plantations. Mitigat Adaptat Strat Global Change 18:1197–1213

    Article  Google Scholar 

  • Kooch Y, Tarighat FS, Hosseini SM (2017) Tree species effects on soil chemical, biochemical and biological features in mixed Caspian lowland forests. Trees-Struct Funct 31:863–872

    Article  CAS  Google Scholar 

  • Kumar P, Mishra AK, Chaudhari SK, Sharma DK, Rai AK, Singh K, Rai P, Singh R (2021) Carbon sequestration and soil carbon build-up under Eucalyptus plantation in semi-arid regions of North-West India. J Sustain For 40(4):319–331

    Article  Google Scholar 

  • Kumar R, Bhatnagar PR, Kakade V, Dobhal S (2020) Tree plantation and soil water conservation enhances climate resilience and carbon sequestration of agro ecosystem in semi-arid degraded ravine lands. Agric For Meteorol 282-283:107857

    Article  Google Scholar 

  • Li HM, Ma YX, Aide TM, Liu W (2008) Past, present and future land-use in Xishuangbanna, China and the implications for carbon dynamics. For Ecol Manag 255:16–24

    Article  Google Scholar 

  • Li Q, Jia Z, Feng L, He L, Yang K (2018) Dynamics of biomass and carbon sequestration across a chronosequence of Caragana intermedia plantations on alpine sandy land. Sci Rep 8:12432

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao CZ, Luo YQ, Fang CM, Chen JK, Li B (2012) The effects of plantation practice on soil properties based on the comparison between natural and planted forests: a meta-analysis. Glob Ecol Biogeogr 21:318–327

    Article  Google Scholar 

  • Lindenmayer DB, Hulvey KB, Hobbs RJ, Colyvan M, Felton A, Possingham H, Steffen W, Wilson K, Youngentob K, Gibbons P (2012) Avoiding bio-perversity from carbon sequestration solutions. Conserv Lett 5(1):28–36

    Article  Google Scholar 

  • Lutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A, Anderson-Teixeira KJ, Andrade A, Baltzer J, Becker KM, Blomdahl EM (2018) Global importance of large-diameter trees. Glob Ecol Biogeogr 27(7):849–864

    Article  Google Scholar 

  • Magalhães TM, Fanheiro ASM, Cossa VN (2021) Miombo conversion to monoculture tree plantations: Changes in soil properties. Land Degrad Dev 32(16):4523–4533

    Article  Google Scholar 

  • Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319(5860):169–172

    Article  CAS  PubMed  Google Scholar 

  • Masera OR, Garza-Caligaris JF, Kanninen M, Karjalainen T, Liski J, Nabuurs GJ, Pussinen A, de Jong BHJ, Mohren GMJ (2003) Modeling carbon sequestration in afforestation, agroforestry and forest management projects: The CO2FIX V.2 approach. Ecol Model 164:177–199

    Article  CAS  Google Scholar 

  • McNeely JA, Neville LE, Rejmanek M (2003) When is eradication a sound investment? Conserv Pract 4:30–41

    Google Scholar 

  • Mead DJ (2005) Opportunities for improving plantation productivity. How much? How quickly? How realistic? Biomass Bioenergy 28:249–266

    Article  Google Scholar 

  • Messier C, Bauhus J, Sousa-Silva R et al (2022) For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv Lett 15:e12829

    Article  Google Scholar 

  • Mildrexler DJ, Berner LT, Law BE, Birdsey RA, Moomaw WR (2020) Large trees dominate carbon storage in forests east of the cascade crest in the United States Pacific Northwest. Front For Glob Change 3:594274

    Article  Google Scholar 

  • Montagnini F, Gonzalez EJ, Porras C, Rheingans R (1995) Mixed and pure forest plantations in the humid neotropics: a comparison of early growth, pest damage and establishment costs. Commonwealth For Rev 74(4):306–314

    Google Scholar 

  • Montagnini F, Porras C (1998) Evaluating the role of plantations as carbon sinks: An example of an integrative approach from the humid tropics. Environ Manag 22(3):459–470

    Article  CAS  Google Scholar 

  • Moomaw WR, Law BE, Goetz SJ (2020) Focus on the role of forests and soils in meeting climate change mitigation goals: Summary. Environ Res Lett 15(4):045009

    Article  CAS  Google Scholar 

  • N’Gbala FN, Guéi AM, Tondoh JE (2017) Carbon stocks in selected tree plantations, as compared with semi-deciduous forests in centre-west Côte d’Ivoire. Agric Ecosys Environ 239:30–37

    Article  Google Scholar 

  • Newmark WD, Jenkins CN, Pimm SL, McNeally PB, Halley JM (2017) Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc Nat Acad Sci 114(36):9635–9640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson S, Schopfhauser W (1995) The carbon sequestration potential of a global afforestation program. Clim Chang 30:267–293

    Article  CAS  Google Scholar 

  • Novor S, Abugre S (2020) Growth Performance, Undergrowth Diversity and Carbon Sequestration Potentials of Tree Species Stand Combinations, Ghana. Open J For 10(1):135–154

    Google Scholar 

  • Nyland RD (1996) Silviculture: concepts and applications. McGraw-Hill Companies, New York

    Google Scholar 

  • Oldekop JA, Sims KR, Karna BK, Whittingham MJ, Agrawal A (2019) Reductions in deforestation and poverty from decentralized forest management in Nepal. Nat Sustain 2(5):421–428

    Article  Google Scholar 

  • Olden JD, LeRoy PN, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24

    Article  PubMed  Google Scholar 

  • Omomoh BE, Brown L, Meijer K, Adekunle VAJ, Oboh G (2022) Ecological studies on introduction of alien species (Clerodendrum paniculatum Linn) in Forest Plantation and Nature Reserve Forest of Tropical Africa, Nigeria. Vegetos 35(2):306–316

    Article  Google Scholar 

  • Osuri AM, Gopal A, Raman TS, DeFries R, Cook-Patton SC, Naeem S (2020) Greater stability of carbon capture in species-rich natural forests compared to species-poor plantations. Environ Res Lett 15(3):034011

    Article  CAS  Google Scholar 

  • Otsamo R (2000) Early development of three planted indigenous tree species and natural understory vegetation in artificial gaps in an Acacia mangium stand on an Imperata cylindrica Grassland site in South Kalimantan, Indonesia. New For 19:51–68

    Article  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993

    Article  CAS  PubMed  Google Scholar 

  • Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W, Liu S, Orazio C, Rodriguez L, Silva LN, Wingfield MJ (2015) Changes in planted forests and future global implications. For Ecol Manag 352:57–67

    Article  Google Scholar 

  • Pearson TRH, Brown S, Murray L, Sidman G (2017) Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Bal Manag 12(3):1–11

    Google Scholar 

  • Pietrzykowski M, Woś B, Tylek P, Kwaśniewski D, Juliszewski T, Walczyk J, Likus-Cieślik J, Ochał W, Tabor S (2021) Carbon sink potential and allocation in above- and below-ground biomass in willow coppice. J For Res 32(1):349–354

    Article  CAS  Google Scholar 

  • Prasad JV, Srinivas K, Rao CS, Ramesh C, Venkatravamma K, Venkateswarlu B (2012) Biomass productivity and carbon stocks of farm forestry and agroforestry systems of Leucaena and Eucalyptus in Andhra Pradesh, India. Curr Sci 10:536–540

    Google Scholar 

  • Pretzsch H, Schutze G (2016) Effect of tree species mixing on the size structure, density, and yield of forest stands. Eur J For Res 135:1–22

    Article  Google Scholar 

  • Qin Z, Deng X, Griscom B, Huang Y, Li T, Smith P, Yuan W, Zhang W (2021) Natural climate solutions for China: the last mile to carbon neutrality. Adv Atmos Sci 38(6):889–895

    Article  Google Scholar 

  • Rahman MM, Kabir ME, Akon AJ, Ando K (2015) High carbon stocks in roadside plantations under participatory management in Bangladesh. Glob Ecol Conserv 3:412–423

    Article  Google Scholar 

  • Rais A, Poschenrieder W, Pretzsch H, Kuilen J-WG (2014) Influence of initial plant density on sawn timber properties for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Ann Forest Sci 71:617–626

    Article  Google Scholar 

  • Rathore AC, Mehta H, Islam S, Saroj PL, Sharma NK, Jayaprakash J, Gupta AK, Dubey RK, Ghosh BN, Prasad R, Kumar D, Raizada A (2021) Biomass, carbon stocks estimation and predictive modeling in mango based land uses on degraded lands in Indian Sub-Himalayas. Agrofor Syst 95(8):1563–1575

    Article  Google Scholar 

  • Ratnam J, Owuor MA, Greve M, Fu C, Stevens N, Mekuria W, Fidelis A, De Cauwer V, Lele S, Begotti RA, Soterroni A, Ribeiro NS, Chen A (2020) Trees as nature-based solutions: a global south perspective. One Earth 3:140–144

    Article  Google Scholar 

  • Reino L, Porto M, Morgado R, Carvalho F, Mire A, Beja P (2010) Does afforestation increase bird nest predation risk in surrounding farmland? For Ecol Manag 260:1359–1366

    Article  Google Scholar 

  • Richards AE, Forrester DI, Bauhus J, Scherer-Lorenzen M (2010) The influence of mixed tree plantations on the nutrition of individual species: a review. Tree Physiol 30:1192–1208

    Article  PubMed  Google Scholar 

  • Richardson DM, Rejmanek M (2004) Conifers as invasive aliens: a global survey and predictive framework. Divers Distrib 10:321–331

    Article  Google Scholar 

  • Ritchie H, Roser M (2020) CO2 and greenhouse gas emissions. OurWorldInData.org

  • Roe S, Streck C, Obersteiner M et al (2019) Contribution of the land sector to a 1.5°C world. Nat Clim Chang 9(11):817–828

    Article  Google Scholar 

  • Saharjo BH (1997) Fire protection and industrial forest management in the tropics. Commonwealth For Rev 76(3):203–206

    Google Scholar 

  • Schuldt A, Assmann T, Brezzi M et al (2018) Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat Commun 9:2989

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepherd D, Montagnini F (2001) Above ground carbon sequestration potential in mixed and pure tree plantations in the humid tropics. J Trop For Sci 13(3):450–459

    Google Scholar 

  • Shin MY, Miah MD, Lee KH (2007) Potential contribution of the forestry sector in Bangladesh to carbon sequestration. J Environ Manag 82(2):260–276

    Article  CAS  Google Scholar 

  • Stinson G, Kurz WA, Smyth CE, Neilson ET, Dymond CC, Metsaranta JM, Boisvenue C, Rampley GJ, Li Q, White TM, Blain D (2011) An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Glob Change Biol 17:2227–2244

    Article  Google Scholar 

  • Sullivan MJ, Lewis SL, Affum-Baffoe K et al (2020) Long-term thermal sensitivity of Earth’s tropical forests. Science 368(6493):869–874

    Article  CAS  PubMed  Google Scholar 

  • Tamang M, Chettri R, Vineeta SG, Bhat JA, Kumar A, Kumar M, Suryawanshi A, Cabral-Pinto M, Chakravarty S (2021) Stand structure, biomass and carbon storage in Gmelina arborea plantation at agricultural landscape in foothills of Eastern Himalayas. Land 10(4):387

    Article  Google Scholar 

  • Tau Strand L, Fjellstad W, Jackson-Blake L, De Wit HA (2021) Afforestation of a pasture in Norway did not result in higher soil carbon, 50 years after planting. Landsc Urban Plan 207:104007

    Article  Google Scholar 

  • UNEP (United Nations Environment Programme) (2020) Emissions gap report 2020. United Nations Environment Programme, Nairobi, Kenya

    Google Scholar 

  • Usuga JC, Toro JA, Alzate MV, Tapias ÁD (2010) Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests. For Ecol Manag 260(10):1906–1913

    Article  Google Scholar 

  • van Minnen JG, Strengers BJ, Eickhout B, Swart RJ, Leemans R (2008) Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model. Carbon Bal Manag 3:3

    Article  Google Scholar 

  • Veloso MG, Dieckow J, Zanatta JA, Bayer C, Higa RCV, Brevilieri RC, Comerford NB, Stoppe AM (2018) Reforestation with loblolly pine can restore the initial soil carbon stock relative to a subtropical natural forest after 30 years. Eur J Res 137:593–596

    Article  Google Scholar 

  • Verchot L, van Noordwijk M, Kandji S et al (2007) Climate change: linking adaptation and mitigation through agroforestry. Mitig Adapt Strat Glob Change 12:901–918

    Article  Google Scholar 

  • Wall DH, Nielsen UN (2012) Biodiversity and ecosystem services: is it the same below ground. Nat Edu Knowl 3(12):8

    Google Scholar 

  • Wang Y, Liu L, Yue F, Li D (2019) Dynamics of carbon and nitrogen storage in two typical plantation ecosystems of different stand ages on the Loess Plateau of China. Peer J 7:e7708

    Article  PubMed  PubMed Central  Google Scholar 

  • Weitzel M, Vandyck T, Keramidas K, Amann M, Capros P, den Elzen M, Frank S, Tchung-Ming S, Díaz Vázquez A, Saveyn B (2019) Model-based assessments for long-term climate strategies. Nat Clim Chang 9(5):345–347

    Article  Google Scholar 

  • Williams KJH (2014) Public acceptance of plantation forestry: Implications for policy and practice in Australian rural landscape. Land Use Policy 38:346–354

    Article  Google Scholar 

  • Yanci SU, Youxin MA, Kunfang CA, Hongmei LI, Jinxiang SH, Wenjun LI, Liang DI, Cencen ME (2017) Temporal changes of ecosystem carbon stocks in rubber plantations in Xishuangbanna, Southwest China. Pedosphere 27(4):737–746

    Article  Google Scholar 

  • Yen TM, Huang KL, Li LE, Wang CH (2020) Assessing carbon sequestration in plantation forests of important conifers based on the system of permanent sample plots across Taiwan. J Sustain For 39(4):392–406

    Article  Google Scholar 

  • Zarin DJ (2012) Carbon from tropical deforestation. Science 336:1518–1519

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Sarira TV, Carrasco LR, Chong KY, Friess DA, Lee JSH, Taillardat P, Worthington TA, Zhang Y, Koh LP (2020) Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nat Clim Chang 10(9):842–844

    Article  Google Scholar 

Download references

Acknowledgement

SK is grateful to the University Grants Commission for the award of Dr. D.S. Kothari Postdoctoral Fellowship (No.F.4-2/2006 (BSR)/BL/20-21/0067). JAD is thankful to Science and Engineering Research Board (SERB), Department of Science and Technology, New Delhi, for funding under National Post-Doctoral Fellowship Scheme (Ref. No.: PDF/2015/000447). We also sincerely acknowledge the Department of Biotechnology (DBT), Govt. of India (BT/PR12899/NDB/39/506/2015).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kothandaraman, S., Dar, J.A., Bhat, N.A., Sundarapandian, S., Khan, M.L. (2022). Tree Plantation: A Silver Bullet to Achieve Carbon Neutrality?. In: Panwar, P., Shukla, G., Bhat, J.A., Chakravarty, S. (eds) Land Degradation Neutrality: Achieving SDG 15 by Forest Management. Springer, Singapore. https://doi.org/10.1007/978-981-19-5478-8_12

Download citation

Publish with us

Policies and ethics