Skip to main content

Phytobial Remediation: A New Technique for Ecological Sustainability

  • Chapter
  • First Online:
Agricultural and Environmental Nanotechnology

Part of the book series: Interdisciplinary Biotechnological Advances ((IBA))

  • 589 Accesses

Abstract

Worldwide, environmental pollution is gradually expanding. The most contaminated natural resources are air, water, and land, implying that new techniques are essential to encounter this challenge. Phytonanotechnology is one of the cutting-edge techniques for air, water, and soil remediation with excellent benefits when compared to conventional pollutant removal methods. This chapter highlights the field of nanotechnology with phytoremediation. Both are useful to deliver eco-friendly methods that enhance human well-being by removing pollutants. Also, various processes of bioextract mediated synthesis of nanomaterials are explored for phytobial remediation of organic and inorganic pollutants. In order to enhance the removal of environmental contaminants, raise water quality and safeguard human and environmental well-being, phytonanotechnology has to be used. A significant aspect of the modern field of ecological engineering is phytoremediation, it uses the plants to control and normalize pollution of air, water, and soil. Owing to the dependency on recycling of nutrients using sunlight, most applications are inexpensive. As it requires large land areas and longer treatment time, the treatments are in general limited for shallow water zones. For a variety of waste remediation, those generally present in low concentrations which are not acutely phytotoxic, applications for wetlands, tree plantations, crops, and grasslands are successful. However, using the basic concepts of ecological engineering, very few phytoremediation methods have been designed for environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali I, Peng CS, Naz I, Khan ZM, Sultan M, Islam T, Abbasi IA (2017) Phytogenic magnetic nanoparticles for wastewater treatment: a review. RSC Adv 7(64):40158–40178

    Article  CAS  Google Scholar 

  • Begum JPS, Manjunath K, Pratibha S, Dhananjaya N, Sahu P, Kashaw S (2020) Bioreduction synthesis of zinc oxide nanoparticles using Delonix regia leaf extract (Gul Mohar) and its agromedicinal applications. J Sci Adv Mater Devices 5(4):468–475

    Article  Google Scholar 

  • Begum SJP, Pratibha S, Rawat JM, Venugopal D, Sahu P, Gowda A, Qureshi KA, Jaremko M (2022) Recent advances in green synthesis, characterization, and applications of bioactive metallic nanoparticles. Pharma 15(4):455

    CAS  Google Scholar 

  • Campaña AL, Florez SL, Noguera MJ, Fuentes OP, Puentes PR, Cruz JC, Osma JF (2019) Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater. Biosensors (Basel) 9(1):41

    Article  Google Scholar 

  • Canli EG, Dogan A, Canli M (2018) Serum biomarker levels alter following nanoparticle (Al2O3, CuO, TiO2) exposures in freshwater fish (Oreochromis niloticus). Environ Toxicol Pharmacol 62:181–187

    Article  CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Biochem 110:210–225

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep (Amst) 15:11–23

    Article  Google Scholar 

  • Ejeian F, Etedali P, Mansouri-Tehrani HA, Soozanipour A, Low ZX, Asadnia M, Taheri-Kafrani A, Razmjou A (2018) Biosensors for wastewater monitoring: a review. Biosens Bioelectron 118:66–79

    Article  CAS  Google Scholar 

  • Elemike EE, Onwudiwe DC, Ogeleka DF, Mbonu JI (2019) Phyto-assisted preparation of Ag and Ag–CuO nanoparticles using aqueous extracts of Mimosa pigra and their catalytic activities in the degradation of some common pollutants. J Inorg Organomet Polym Mater 29:1798–1806

    Article  CAS  Google Scholar 

  • Fernández-Luqueño F, López-Valdez F, Rodríguez MF, Pariona N, Hernández-López J, García-Ortíz I, Lopez-Baltazar J, Vega-Sánchez M, Espinoza-Zapata R, Acosta-Gallegos J (2014) Effect of nanofertilizers on plant growth and development, and their interrelationship with the environment. In: López-Valdez F, Fernández-Luqueño F (eds) Fertilizers: components, uses in agriculture and environmental impacts. Nova, New York, pp 211–224

    Google Scholar 

  • Fernández-Luqueño F, López-Valdez F, Sarabia-Castillo CR, García-Mayagoitia S, Pérez-Ríos SR (2017) Bioremediation of polycyclic aromatic hydrocarbons-polluted soils at laboratory and field scale: a review of the literature on plants and microorganisms. In: Naser A, Saravjeet G, Narendra T (eds) Enhancing cleanup of environmental pollutants, Biological approaches, vol 1. Springer, Cham, pp 43–64

    Chapter  Google Scholar 

  • Fernández-Luqueño F, Medina-Pérez G, López-Valdez F, Gutiérrez-Ramírez R, Campos-Montiel RG, Vázquez-Núñez E, Loera-Serna S, Almaraz-Buendía I, Del Razo-Rodríguez OE, Madariaga-Navarre A (2018) Use of agronanobiotechnology in the agro-food industry to preserve environmental health and improve the welfare of farmers. In: López-Valdez F, Fernández-Luqueño F (eds) Agricultural nanobiotechnology. Springer, Cham, pp 3–16

    Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    Article  Google Scholar 

  • Gogos A, Moll J, Klingenfuss F, van der Heijden M, Irin F, Green MJ, Zenobi R, Bucheli TD (2016) Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. J Nanobiotechnol 14:40

    Article  Google Scholar 

  • Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396

    Article  CAS  Google Scholar 

  • Han HW, Rafiq MK, Zhou TY, Xu R, Masek O, Li XK (2019) A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J Hazard Mater 369:780–796

    Article  CAS  Google Scholar 

  • Hanot-Roy M, Tubeuf E, Guilbert A, Bado-Nilles A, Vigneron P, Trouiller B, Braun A, Lacroix G (2016) Oxidative stress pathways involved in cytotoxicity and genotoxicity of titanium dioxide (TiO2) nanoparticles on cells constitutive of alveolo-capillary barrier in vitro. Toxicol In Vitro 33:125–135

    Article  CAS  Google Scholar 

  • Hwang ET, Gu MB (2012) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13:49–61

    Article  Google Scholar 

  • Kachenton S, Whangpurikul V, Kangwanrangsan N, Tansatit T, Jiraungkoorskul W (2018) Silver nanoparticles toxicity in brine shrimp and its histopathological analysis. Int J Nanosci 17(6):1850007

    Article  CAS  Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13(8):677–684

    Article  CAS  Google Scholar 

  • Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  • Lekamge S, Miranda AF, Ball AS, Shukla R, Nugegoda D (2019) The toxicity of coated silver nanoparticles to Daphnia carinata and trophic transfer from alga Raphidocelis subcapitata. PLoS One 14(4):0214398

    Article  Google Scholar 

  • Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B (2016) Uptake, translocation and physiological effects of magnetic iron oxide (gamma-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Lynch JM, Moffat AJ (2005) Bioremediation-prospects for the future application of innovative applied biological research. Ann Appl Biol 146(2):217–221

    Article  Google Scholar 

  • Manjunatha CR, Nagabhushana BM, Narayana A, Pratibha S, Raghu MS (2019a) Effective and fast adsorptive removal of fluoride on CaAl2O4: Ba nanoparticles: isotherm, kinetics and reusability studies. Mater Res Express 6(11):115089

    Article  Google Scholar 

  • Manjunatha CR, Nagabhushana BM, Raghu MS, Pratibha S, Dhananjaya N, Narayana A (2019b) Perovskite lanthanum aluminate nanoparticles applications in antimicrobial activity, adsorptive removal of direct blue 53 dye and fluoride. Mater Sci Eng C 101:674–685

    Article  CAS  Google Scholar 

  • Manjunatha CR, Nagabhushana BM, Adarsha JR, Pratibha S, Dhananjaya N (2019c) One pot solution combustion synthesis of nano Dicalcium magnesium aluminate and effective utilization of hazardous fluoride removal: kinetics, equilibrium and reusability studies. Mater Res Express 6(11):115025

    Article  CAS  Google Scholar 

  • Oloumi H, Mousavi EA, Nejad RM (2018) Multi-wall carbon nanotubes effects on plant seedlings growth and cadmium/lead uptake in vitro. Russ J Plant Physiol 65(2):260–268

    Article  CAS  Google Scholar 

  • Pratibha S, Dhananjaya N, Manjunatha CR, Narayana A (2020a) Fast adsorptive removal of direct blue-53 dye on rare-earth doped Lanthanum aluminate nanoparticles: equilibrium and kinetic studies. Mater Res Express 6(12):1250i5

    Article  Google Scholar 

  • Pratibha S, Dhananjaya N, Begum JPS, Halappa P (2020b) Modified Benign approach for probing the structural, optical and antibacterial activity of Sm3+-doped Bi3+-co-doped LaAlO3 nanoparticles. Eur Phys J Plus 135(8):1–25

    Article  Google Scholar 

  • Pratibha S, Chethan B (2022) Carbon nanomaterial-based sensor safety in different fields. Elsevier, In carbon nanomaterials-based sensors, pp 315–332

    Book  Google Scholar 

  • Rajput VD, Minkina T, Sushkova S, Tsitsuashvili V, Mandzhieva S, Gorovtsov A, Gromakova N (2017) Effect of nanoparticles on crops and soil microbial communities. J Soil Sediment 18(6):2179–2187

    Article  Google Scholar 

  • Raveesha HR, Bharath HL, Vasudha DR, Sushma BK, Pratibha S, Dhananjaya N (2021) Antibacterial and antiproliferation activity of green synthesized nanoparticles from rhizome extract of Alpinia galangal (L.) Wild. Inorg Chem Commun 132:108854

    Article  CAS  Google Scholar 

  • Samei M, Sarrafzadeh MH (2019) The impact of morphology and size of zinc oxide nanoparticles on its toxicity to the freshwater microalga, Raphidocelis subcapitata. Environ Sci Pollut Res 26(3):2409–2420

    Article  CAS  Google Scholar 

  • Santhosh C, Malathi A, Dhaneshvar E, Bhatnagar A, Grace AN, Madhavan J (2019) Iron oxide nanomaterials for water purification. In: Thomas S, Pasquini D, Leu S, Gopakumar DA (eds) Nanoscale materials in water purification. Elsevier, pp 431–446

    Chapter  Google Scholar 

  • Scott T, Zhao HL, Deng W, Feng XH, Li Y (2019) Photocatalytic degradation of phenol in water under simulated sunlight by an ultrathin MgO coated Ag/TiO2 nanocomposite. Chemosphere 216:1–8

    Article  CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Siddiqui MH et al (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer, Cham, pp 19–35

    Google Scholar 

  • Vasantharaj S, Sathiyavimal S, Saravanan M, Senthikumar P, Gnanasekaran K, Sharunugavel M, Manikandan E, Pugazhendhi A (2019) Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. J Photochem Photobiol B Biol 191:143–149

    Article  CAS  Google Scholar 

  • Werkneh AA, Rene ER (2019) Applications of nanotechnology and biotechnology for sustainable water and wastewater treatment. In: Bui XT, Chiemchaisri C, Fujioka T, Varjani S (eds) Water and wastewater treatment technologies, Energy, environment, and sustainability. Springer, Singapore, pp 405–430

    Google Scholar 

  • Wu B, Zhu L, Le XC (2017) Metabolomics analysis of TiO2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environ Pollut 230:302–310

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pratibha, S., Dhananjaya, N. (2023). Phytobial Remediation: A New Technique for Ecological Sustainability. In: Fernandez-Luqueno, F., Patra, J.K. (eds) Agricultural and Environmental Nanotechnology. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-5454-2_17

Download citation

Publish with us

Policies and ethics