Skip to main content

Transmetalation: A Post-synthetic Modification Tool for Functional Metal–Organic Framework Materials

  • Conference paper
  • First Online:
Recent Advances in Materials Processing and Characterization

Abstract

Post-synthetic modification is a valuable approach to tune the properties of materials after the traditional synthetic protocols without disturbing the core structure. Several post-synthetic methods are adopted for the modification of Metal–Organic Frameworks (MOFs). Transmetalation is a post-synthetic method where new metal ions exchange the metal ions of parent MOFs to tune the chemical and physical properties. Several transmetalation approaches were employed for the complete exchange or partial exchange of parent metal centers to give MOF materials with enhanced properties. In this article, a brief idea about transmetalation and its potential in the making functional MOFs was discussed by listing a few examples of contemporary interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Article  CAS  Google Scholar 

  2. Hoang LTM, Ngo LH, Nguyen HL, Nguyen HTH, Nguyen CK, Nguyen BT, Ton QT, Nguyen HKD, Cordova KE, Truong T (2015) An azobenzene-containing metal–organic framework as an efficient heterogeneous catalyst for direct amidation of benzoic acids: synthesis of bioactive compounds. Chem Commun 51:17132–17135

    Article  CAS  Google Scholar 

  3. Li B, Wen H-M, Zhou W, Chen B (2014) Porous metal-organic frameworks for gas storage and separation: what, how, and why? J Phys Chem Lett 5:3468–3479

    Article  CAS  Google Scholar 

  4. Adil K, Belmabkhout Y, Pillai RS, Cadiau A, Bhatt PM, Assen AH, Maurin G, Eddaoudi M (2017) Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem Soc Rev 46:3402–3430

    Article  CAS  Google Scholar 

  5. Belmabkhout Y, Guillerm V, Eddaoudi M (2016) Low concentration CO2 capture using physical adsorbents: are metal–organic frameworks becoming the new benchmark materials? Chem Eng J 296:386–397

    Article  CAS  Google Scholar 

  6. Kang Z, Fan L, Sun D (2017) Recent advances and challenges of metal–organic framework membranes for gas separation. J Mater Chem A 5:10073–10091

    Article  CAS  Google Scholar 

  7. Zhao X, Wang Y, Li D-S, Bu X, Feng P (2018) Metal-organic frameworks for separation. Adv Mater 30:1705189

    Article  Google Scholar 

  8. Li J-R, Sculley J, Zhou H-C (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  9. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Metal-organic framework materials as chemical sensors. Chem Rev 112:1105–1125

    Article  CAS  Google Scholar 

  10. Achmann S, Hagen G, Kita J, Malkowsky IM, Kiener C, Moos R (2009) Metal-organic frameworks for sensing applications in the gas phase. Sensors 9

    Google Scholar 

  11. Taylor-Pashow KML, Della Rocca J, Xie Z, Tran S, Lin W (2009) Postsynthetic modifications of iron-carboxylate nanoscale metal−organic frameworks for imaging and drug delivery. J Am Chem Soc 131:14261–14263

    Article  CAS  Google Scholar 

  12. So MC, Wiederrecht GP, Mondloch JE, Hupp JT, Farha OK (2015) Metal–organic framework materials for light-harvesting and energy transfer. Chem Commun 51:3501–3510

    Article  CAS  Google Scholar 

  13. Hönicke IM, Senkovska I, Bon V, Baburin IA, Bönisch N, Raschke S, Evans JD, Kaskel S (2018) Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew Chem Int Ed 57:13780–13783

    Article  Google Scholar 

  14. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Article  CAS  Google Scholar 

  15. Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal–organic frameworks. Chem Soc Rev 38:1330–1352

    Article  CAS  Google Scholar 

  16. Mínguez Espallargas G, Coronado E (2018) Magnetic functionalities in MOFs: from the framework to the pore. Chem Soc Rev 47:533–557

    Article  Google Scholar 

  17. Howarth AJ, Liu Y, Li P, Li Z, Wang TC, Hupp JT, Farha OK (2016) Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater 1:15018

    Article  CAS  Google Scholar 

  18. Mondloch JE, Katz MJ, Planas N, Semrouni D, Gagliardi L, Hupp JT, Farha OK (2014) Are Zr6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chem Commun 50:8944–8946

    Google Scholar 

  19. Chae HK, Siberio-Pérez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM, Materials Design and Discovery G (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527

    Google Scholar 

  20. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042

    Article  Google Scholar 

  21. Koh K, Wong-Foy AG, Matzger AJ (2008) A crystalline mesoporous coordination copolymer with high microporosity. Angew Chem Int Ed 47:677–680

    Article  CAS  Google Scholar 

  22. Robson R (2000) A net-based approach to coordination polymers. J Chem Soc, Dalton Trans 3735–3744

    Google Scholar 

  23. Moulton B, Zaworotko MJ (2001) From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. Chem Rev 101:1629–1658

    Article  CAS  Google Scholar 

  24. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal−organic carboxylate frameworks. Acc Chem Res 34:319–330

    Article  CAS  Google Scholar 

  25. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714

    Article  CAS  Google Scholar 

  26. Dau PV, Tanabe KK, Cohen SM (2012) Functional group effects on metal–organic framework topology. Chem Commun 48:9370–9372

    Article  CAS  Google Scholar 

  27. Lu W, Wei Z, Gu Z-Y, Liu T-F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle Iii T, Bosch M, Zhou H-C (2014) Tuning the structure and function of metal–organic frameworks via linker design. Chem Soc Rev 43:5561–5593

    Article  CAS  Google Scholar 

  28. Wang Z, Cohen SM (2009) Postsynthetic modification of metal–organic frameworks. Chem Soc Rev 38:1315–1329

    Article  CAS  Google Scholar 

  29. Brozek CK, Bellarosa L, Soejima T, Clark TV, López N, Dincă M (2014) Solvent-dependent cation exchange in metal–organic frameworks. Chem Eur J 20:6871–6874

    Google Scholar 

  30. Xu G-C, Zhang W, Ma X-M, Chen Y-H, Zhang L, Cai H-L, Wang Z-M, Xiong R-G, Gao S (2011) Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3]. J Am Chem Soc 133:14948–14951

    Article  CAS  Google Scholar 

  31. Mandal S, Natarajan S, Mani P, Pankajakshan A (2021) Post-synthetic modification of metal-organic frameworks toward applications. Adv Func Mater 31:2006291

    Article  CAS  Google Scholar 

  32. Mukherjee G, Biradha K (2012) Post-synthetic modification of isomorphic coordination layers: exchange dynamics of metal ions in a single crystal to single crystal fashion. Chem Commun 48:4293–4295

    Article  CAS  Google Scholar 

  33. Soffer RL (1973) Post-translational modification of proteins catalyzed by aminoacyl-tRNA-protein transferases. Mol Cell Biochem 2:3–14

    Article  CAS  Google Scholar 

  34. Uy R, Wold F (1977) Posttranslational covalent modification of proteins. Science 198:890–896

    Article  CAS  Google Scholar 

  35. Davis Benjamin G (2004) Mimicking posttranslational modifications of proteins. Science 303:480–482

    Article  CAS  Google Scholar 

  36. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252

    Article  CAS  Google Scholar 

  37. Campidelli S, Meneghetti M, Prato M (2007) Separation of metallic and semiconducting single-walled carbon nanotubes via covalent functionalization. Small 3:1672–1676

    Article  CAS  Google Scholar 

  38. Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chem Eur J 9:3732–3739

    Google Scholar 

  39. Sun Y-P, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104

    Article  CAS  Google Scholar 

  40. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192

    Article  CAS  Google Scholar 

  41. Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 571–577

    Google Scholar 

  42. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68

    Article  CAS  Google Scholar 

  43. Chui Stephen SY, Lo Samuel MF, Charmant Jonathan PH, Orpen AG, Williams Ian D (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150

    Article  Google Scholar 

  44. Hwang YK, Hong D-Y, Chang J-S, Jhung SH, Seo Y-K, Kim J, Vimont A, Daturi M, Serre C, Férey G (2008) Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew Chem Int Ed 47:4144–4148

    Article  CAS  Google Scholar 

  45. Demessence A, D’Alessandro DM, Foo ML, Long JR (2009) Strong CO2 binding in a water-stable, triazolate-bridged metal−organic framework functionalized with ethylenediamine. J Am Chem Soc 131:8784–8786

    Article  CAS  Google Scholar 

  46. Bommakanti S, Das SK (2019) A quantitative transmetalation with a metal organic framework compound in a solid–liquid interface reaction: synthesis, structure, kinetics, spectroscopy and electrochemistry. CrystEngComm 21:2438–2446

    Article  CAS  Google Scholar 

  47. Dincǎ M, Long JR (2007) High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal−organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. J Am Chem Soc 129:11172–11176

    Article  Google Scholar 

  48. Cairns AJ, Perman JA, Wojtas L, Kravtsov VC, Alkordi MH, Eddaoudi M, Zaworotko MJ (2008) Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron. J Am Chem Soc 130:1560–1561

    Article  CAS  Google Scholar 

  49. Asha KS, Bhattacharjee R, Mandal S (2016) Complete transmetalation in a metal-organic framework by metal ion metathesis in a single crystal for selective sensing of phosphate ions in aqueous media. Angew Chem Int Ed 55:11528–11532

    Article  CAS  Google Scholar 

  50. Sun D, Sun F, Deng X, Li Z (2015) Mixed-metal strategy on metal-organic frameworks (MOFs) for functionalities expansion: Co substitution induces aerobic oxidation of cyclohexene over inactive Ni-MOF-74. Inorg Chem 54:8639–8643

    Article  CAS  Google Scholar 

  51. Pereira MM, Dias LD, Calvete MJF (2018) Metalloporphyrins: bioinspired oxidation catalysts. ACS Catal 8:10784–10808

    Article  CAS  Google Scholar 

  52. Beyene BB, Hung C-H (2020) Recent progress on metalloporphyrin-based hydrogen evolution catalysis. Coord Chem Rev 410:213234

    Article  CAS  Google Scholar 

  53. Gotico P, Halime Z, Aukauloo A (2020) Recent advances in metalloporphyrin-based catalyst design towards carbon dioxide reduction: from bio-inspired second coordination sphere modifications to hierarchical architectures. Dalton Trans 49:2381–2396

    Article  CAS  Google Scholar 

  54. Zhang Z, Zhang L, Wojtas L, Nugent P, Eddaoudi M, Zaworotko MJ (2012) Templated synthesis, postsynthetic metal exchange, and properties of a porphyrin-encapsulating metal-organic material. J Am Chem Soc 134:924–927

    Article  CAS  Google Scholar 

  55. Pal TK, De D, Neogi S, Pachfule P, Senthilkumar S, Xu Q, Bharadwaj PK (2015) Significant gas adsorption and catalytic performance by a robust CuII–MOF derived through single-crystal to single-crystal transmetalation of a thermally less-stable ZnII–MOF. Chem Eur J 21:19064–19070

    Google Scholar 

  56. Chen B, Yang Z, Zhu Y, Xia Y (2014) Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J Mater Chem A 2:16811–16831

    Article  CAS  Google Scholar 

  57. Jin C-X, Shang H-B (2021) Synthetic methods, properties and controlling roles of synthetic parameters of zeolite imidazole framework-8: a review. J Solid State Chem 297:122040

    Article  CAS  Google Scholar 

  58. Feng S, Zhang X, Shi D, Wang Z (2021) Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review. Front Chem Sci Eng 15:221–237

    Article  CAS  Google Scholar 

  59. Zhao C, Dai X, Yao T, Chen W, Wang X, Wang J, Yang J, Wei S, Wu Y, Li Y (2017) Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc 139:8078–8081

    Article  CAS  Google Scholar 

  60. Bůžek D, Adamec S, Lang K, Demel J (2021) Metal–organic frameworks vs. buffers: case study of UiO-66 stability. Inorg Chem Front 8:720–734

    Google Scholar 

  61. Zheng W, Lee LYS (2021) Metal-organic frameworks for electrocatalysis: catalyst or precatalyst? ACS Energy Lett 6:2838–2843

    Article  CAS  Google Scholar 

  62. Wu H, Chua YS, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W (2013) Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532

    Article  CAS  Google Scholar 

  63. Winarta J, Shan B, McIntyre SM, Ye L, Wang C, Liu J, Mu B (2020) A decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal-organic framework. Cryst Growth Des 20:1347–1362

    Article  CAS  Google Scholar 

  64. Sun D, Liu W, Qiu M, Zhang Y, Li Z (2015) Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chem Commun 51:2056–2059

    Article  CAS  Google Scholar 

  65. Lee Y, Kim S, Kang JK, Cohen SM (2015) Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chem Commun 51:5735–5738

    Article  CAS  Google Scholar 

  66. Nazri MKHM, Sapawe N (2020) A short review on photocatalytic toward dye degradation. Mater Today Proc 31:A42–A47

    Article  CAS  Google Scholar 

  67. Routoula E, Patwardhan SV (2020) Degradation of anthraquinone dyes from effluents: a review focusing on enzymatic dye degradation with industrial potential. Environ Sci Technol 54:647–664

    Google Scholar 

  68. Navarro Amador R, Carboni M, Meyer D (2017) Sorption and photodegradation under visible light irradiation of an organic pollutant by a heterogeneous UiO-67–Ru–Ti MOF obtained by post-synthetic exchange. RSC Adv 7:195–200

    Article  Google Scholar 

  69. Smith SJD, Ladewig BP, Hill AJ, Lau CH, Hill MR (2015) Post-synthetic Ti exchanged UiO-66 metal-organic frameworks that deliver exceptional gas permeability in mixed matrix membranes. Sci Rep 5:7823

    Google Scholar 

  70. Hon Lau C, Babarao R, Hill MR (2013) A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. Chem Commun 49:3634–3636

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathish Kumar Kurapati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kurapati, S.K. (2023). Transmetalation: A Post-synthetic Modification Tool for Functional Metal–Organic Framework Materials. In: Arockiarajan, A., Duraiselvam, M., Raju, R., Reddy, N.S., Satyanarayana, K. (eds) Recent Advances in Materials Processing and Characterization. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-5347-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5347-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5346-0

  • Online ISBN: 978-981-19-5347-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics