Abstract
With the improvement of modernization, China’s animal husbandry and fishery enterprise has ushered in a new vogue of informationization, factorization, and precision farming, and the demand for unique identification of individual animals is growing. Traditional individual animal identification methods, such as footprint identification, molecular biology, and different techniques, have low accuracy, excessive cost, and different risks. RFID technological know-how and implants put on monitoring units and different techniques additionally face invasiveinvasiveness, excessive labor costs, slender application scopes and challenges in promoting a massive place and different issues. Deep learning is enjoying an increasing number of essential positions in the discipline of animal individual identification, which has made it possible for the noninvasive recognition of individual animals. This paper discusses the progress of individual animal recognition using computer vision techniques and its application popularity in different species fields, focuses on the issues and challenges of individual animal recognition, and suggests that future lookup instructions for animal identification are foreseen.
Keywords
- Animal recognition
- Individual identification
- Deep learning
- Computer visio
- Convolutional neural network
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Hou, J., He, Y., Yang, H., et al.: Identification of animal individuals using deep learning: a case study of giant panda. Biol. Conserv. 242, 1–6 (2020)
Sun, Y.K., Huo, P.J., Wang, Y.J., et al.: Automatic monitoring system for individual dairy cows based on a deep learning framework that provides identification via body parts and estimation of body condition score. J. Dairy Sci. 102(11), 10140–10151 (2019)
Kalafut, K.L., Kinley, R.: Using radio frequency identification for behavioral monitoring in little blue penguins. J. Appl. Anim. Welf. Sci. 23(1), 62–73 (2020)
Lu, H.K.: Analysis and Research of Giant Panda Individual Identification System Based on Voiceprint, pp. 1–75. University of Electronic Science and Technology of China (2019)
Psota, E.T., Schmidt, T., Mote, B., et al.: Long-term tracking of group-housed livestock using keypoint detection and MAP estimation for individual animal identification. Sensors 20(13), 3670 (2020)
Guo, S.T., Xu, P.F., Miao, Q.G.: Accurate identification of “true and false Monkey King” animal individual identification system is coming. Netinfo Secur. 21(03), 99 (2021)
Lin, S., Zhao, Y.: Review on key technologies of target exploration in underwater optical images. Laser Optoelectron. Prog. 57(6), 060002 (2020)
Terayama, K., Shin, K., Mizuno, K., et al.: Integration of sonar and optical camera images using deep neural network for fish monitoring. Aquacult. Eng. 86, 102000 (2019)
Deng, J., Dong, W., Socher, R., et al.: ImageNet: A large-scale hierarchical image database. In: Proceedings of IEEE Computer Vision & Pattern Recognition, pp. 248–255 (2009)
Khan, M.H., Mcdonagh, J., Khan, S., et al.: AnimalWeb: a large-scale hierarchical dataset of annotated animal faces. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, pp. 6939–6948. IEEE (2020)
Yuan, H.C., Zhang, S.: Detection of underwater fish based on Faster R-CNN and image enhancement. J. Dalian Ocean Univ. 35(4), 612–619 (2020)
Liu, Z.Y., Li, X., Fan, L.Z., et al.: Measuring feeding activity of fish in RAS using computer vision. Aquacult. Eng. 60, 20–27 (2014)
Ye, X.C., Li, Z., Sun, B.L., et al.: Deep joint depth estimation and color correction from monocular underwater images based on unsupervised adaptation networks. IEEE Trans. Circ. Syst. Video Technol. 30(11), 3995–4008 (2020)
Ma, L., et al.: Learning multi-scale retinex with residual network for low-light image enhancement. In: Peng, Y., et al. (eds.) PRCV 2020. LNCS, vol. 12305, pp. 291–302. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60633-6_24
Chen, G., Song, X.: Quantum color image scaling on QIRHSI model. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds.) ICPCSEE 2021. CCIS, vol. 1451, pp. 453–467. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5940-9_35
Jia, Y.X., Fan, S.C., Yi, X.M.: Fish recognition based on significant enhancement and transfer learning. Fish. Modernization 264(01), 40–48 (2020)
Liu, P., Yang, H.B., Song, Y.: Marine biometric algorithm based on improved YOLOv3 network. Appl. Res. Comput. 37(S1), 394–397 (2020)
Wang, Y., Liang, Z., Cheng, X.: Fast target tracking based on improved deep sort and YOLOv3 fusion algorithm. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds.) ICPCSEE 2021. CCIS, vol. 1451, pp. 360–369. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5940-9_27
Ren, S.Q., He, K.M., Girshick, R., et al.: Faster R-CNN: toward real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)
Girshick, R., Donahue, J., Darrell, T., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, pp. 580–587. IEEE (2014)
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Huang, G., Liu, Z., Van, D., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 4700–4708. IEEE (2017)
Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection, pp. 779–788. IEEE (2016)
Shi, J., Zhang, G., Yuan, J., Zhang, Y.: Improved YOLOv3 infrared image pedestrian detection algorithm. In: Zeng, J., Jing, W., Song, X., Lu, Z. (eds.) ICPCSEE 2020. CCIS, vol. 1257, pp. 506–517. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-7981-3_37
Ghiasi, G., Lin, T.Y., Le, Q.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, pp. 7029–7038. IEEE (2019)
Shah, S., Wu, W., Lu, Q., et al.: AmoebaNet: an SDNenabled network service for big data cience. J. Netw. Comput. Appl. 119, 70–82 (2018)
Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, pp. 10778–10787. IEEE (2020)
Chen, Q., Wang, Y., Yang, T., et al.: You only look one-level feature. arXiv:2103.09460 (2021)
Chaudhari, S., Mithal, V., Polatkan, G., et al.: An attentive survey of attention models. ACM Trans. Intell. Syst. Technol. (TIST) 12(5), 1–32 (2021)
Guo, S.T., Xu, P.F., Miao, Q.G., et al.: Automatic identification of individual primates with deep learning techniques. iScience 23(8), 101412 (2020)
Zhang, K.P., Zhang, Z.P., Li, Z.F., et al.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Sig. Process. Lett. 23(10), 1499–1503 (2016)
Wang, Z.D., Zheng, L., Li, Y.L., et al.: Linkage based face clustering via graph convolution network. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, pp. 1117–1125. IEEE (2019)
Zhang, J.L., Zeng, G.S., Qin, R.F.: Fish recognition method for submarine observation video based on deep learning. J. Comput. Appl. 39(2), 376–381 (2019)
Schofield, D., Nagrani, A., Zisserman, A., et al.: Chimpanzee face recognition from videos in the wild using deep learning. Sci. Adv. 5(9), eaaw0736 (2019)
Brust, C.A., Burghardt, T., Groenenberg, M., et al.: Toward automated visual monitoring of individual gorillas in the wild. In: 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), Venice, pp. 2820–2830. IEEE (2017)
Deng, K., Liu, W., Wang, D.H.: Social network analysis and its application in animal behavior. Acta Theriologica Sin. 39(03), 87–98 (2019)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Chen, X., Zou, Q.N., Xie, S.Y., et al.: A key frame automatic selection method for moving object. Comput. Modernization (10), 81–89 (2020)
Liu, J.: Individual identification and sex identification based on black muntjac feces, pp. 1–61. Zhejiang Normal University (2012)
Van, B.S., Fernandez-Duque, E., Di, F.A.: Demography and life history of wild red titi monkeys (Callicebus discolor) and equatorial sakis (Pithecia aequatorialis) in Amazonian Ecuador: a 12-year study. Am. J. Primatol. 78, 204–215 (2016)
Guan, T.P., Owens, J.R., Gong, M.H., et al.: Role of new nature reserve in assisting endangered species conservation-case study of giant pandas in the Northern Qionglai Mountains, China. PLoS ONE 11(8), e0159738 (2016)
Alli, M.N., Viriri, S.: Animal identification based on footprint recognition. In: 2013 International Conference on Adaptive Science and Technology, Pretoria, pp. 1–4. IEEE (2013)
Burghardt, T., Campbell, N.: Individual animal identification using visual biometrics on deformable coat patterns. In: International Conference on Computer Vision Systems: Proceedings, Rio de Janeiro, pp. 1–10. IEEE (2007)
Qin, L.: Research and Development of the Information Collection and Management System for Stocking Sheep Based on RFID, pp. 1–48. Inner Mongolia University (2016)
Chen, P., Swarup, P., Matkowski, W.M., et al.: A study on giant panda recognition based on images of a large proportion of captive pandas. Ecol. Evol. 10(7), 3561–3573 (2020)
Xu, F.Q., Ding, X.Y., Peng, J.J., et al.: Real-time detecting method of marine small object with underwater robot vision. In: 2018 CEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, pp. 1–4. IEEE (2018)
He, K.M., Zhang, X.Y., Ren, S.Q., et al.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Jaderberg, M., Simonyan, K., Zisserman, A.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, Montreal, pp. 2017–2025. NIPS (2015)
Clapham, M., Miller, E., Nguyen, M., et al.: Automated facial recognition for wildlife that lack unique markings: a deep learning approach for brown bears. Ecol. Evol. 10(23), 12883–12892 (2020)
Hilderbrand, G.V., Schwartz, C.C., Robbins, C.T., et al.: The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77(1), 132–138 (1999)
Chopra, S., Hadsell, R., Lecun, Y.: Learning a similarity metric discriminatively, with application to face verification. IEEE Comput. Soc. 1, 539–546 (2005)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering, pp. 815–823. IEEE (2015)
Papageorgiou, C., Poggio, T.: A trainable system for object detection. Int. J. Comput. Vis. 38(1), 15–33 (2000)
Al Arif, S.M.M.R., Knapp, K., Slabaugh, G.: Spnet: shape prediction using a fully convolutional neural network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 430–439. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_49
Wang, K.L., Yuan, H.C.: Aquatic animal image classification method based on transfer learning. J. Comput. Appl. 333(05), 88–92+110 (2018)
Qiao, Y.L., Su, D., Kong, H., et al.: Individual cattle identification using a deep learning based framework. IFAC-PapersOnLine 52(30), 318–323 (2019)
Szegedy, C., Vanhoucke, V., Ioffe, S., et al.: Rethinking the inception architecture for computer vision, pp. 2818–2826. IEEE (2016)
Ordóñez, F., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)
Kumar, S., Pandey, A., Satwik, K.S., et al.: Deep learning framework for recognition of cattle using muzzle point image pattern. Measurement 116, 1–17 (2018)
Qin, X., Song, G.F.: Pig face recognition algorithm based on bilinear convolution neural network. J. Hangzhou Dianzi Univ. (Nat. Sci). 39(02), 12–17 (2019)
Hansen, M.F., Smith, M.L., Smith, L.N., et al.: Toward on-farm pig face recognition using convolutional neural networks. Comput. Ind. 98, 145–152 (2018)
Gaber, T., Tharwat, A., Hassanien, A.E., et al.: Biometric cattle identification approach based on Webers Local Descriptor and AdaBoost classifier. Comput. Electron. Agric. 122, 55–66 (2016)
Lin, T.Y., Roychowdhury, A., Maji, S.: Bilinear CNN models for fine- grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, Santiago, pp. 1449–1457. IEEE (2015)
Cui, S.X., Zhou, Y., Wang, Y.H., et al.: Fish Detection Using Deep Learning. Appl. Comput. Intell. Soft Comput. 2020, 1–13 (2020)
Wang, K.: Research and system development of layer behavior detection method based on deep learning, pp. 1–87. Zhejiang A&F University (2019)
Ye, Z.J., Ren, M.: An experimental animal information management system and an individual identity discrimination method for experimental animals. China, CN111523017A[P], 11 August 2020
Witham, C.L.: Automated face recognition of rhesus macaques. J. Neurosci. Methods 300, 157–165 (2018)
Crouse, D., Jacobs, R.L., Richardson, Z., et al.: LemurFaceID: a face recognition system to facilitate individual identification of lemurs. BMC Zool. 2(1), 1–14 (2017). https://doi.org/10.1186/s40850-016-0011-9
Swarup, P., Chen, P., Hou, R., et al.: Giant panda behavior recognition using images. Glob. Ecol. Conserv. 26, e01510 (2021)
Huang, I.W., Hwang, J.N., Rose, C.S.: Chute based automated fish length measurement and water drop detection. In: IEEE International Conference on Acoustics, Shanghai, pp. 1906–1910. IEEE (2016)
Dong, M.: Object multi-mark recognition algorithm based on machine learning and image processing. Comput. Digit. Eng. 44(12), 2488–2492 (2016)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2(60), 91–110 (2004)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision & Pattern Recognition, San Diego, pp. 886–893. IEEE (2005)
Lin, T.Y., Dollár, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, pp. 2117–2125. IEEE (2017)
Dai, J.F., Qi, H.Z., Xiong, Y.W., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, Venice, pp. 764–773. IEEE (2017)
Acknowledgments
The National Natural Science Foundation of China (31972846) funded this research, Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education (202205), Major Special Plan for Science and Technology in Liaoning Province (2020JH1/10200002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, W., Wu, J., Yu, H., Zhang, H., Zhou, Y., Zhang, Y. (2022). A Review of Animal Individual Recognition Based on Computer Vision. In: Wang, Y., Zhu, G., Han, Q., Wang, H., Song, X., Lu, Z. (eds) Data Science. ICPCSEE 2022. Communications in Computer and Information Science, vol 1628. Springer, Singapore. https://doi.org/10.1007/978-981-19-5194-7_22
Download citation
DOI: https://doi.org/10.1007/978-981-19-5194-7_22
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-5193-0
Online ISBN: 978-981-19-5194-7
eBook Packages: Computer ScienceComputer Science (R0)