Skip to main content

Information Processing Using Soft Body Dynamics

  • Chapter
  • First Online:
The Science of Soft Robots

Part of the book series: Natural Computing Series ((NCS))

  • 676 Accesses

Abstract

In this chapter, we address how the introduction of softness into robots will enable unprecedented information-processing functionalities. In Sect. 15.1, we show how softening a robot’s body activates the control outsourcing to the body. Based on several examples, we provide an overview of the key concept of “embodiment,” under which an intelligent system is viewed as a brain–body–environment system. In Sect. 15.2, we present simple examples to introduce how machine learning techniques for soft robots can be used effectively. In Sect. 15.3, building on the contents of the previous sections, we introduce the concept of physical reservoir computing. We delve into the mathematics of the information-processing capabilities brought about by softness, based on the example of a computer with an octopus arm and a soft interface called a soft keyboard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abarbanel HD, Rulkov NF, Sushchik MM (1996) Generalized synchronization of chaos: the auxiliary system approach. Phys Rev E 53(5):4528

    Article  Google Scholar 

  • Akashi N, Yamaguchi T, Tsunegi S, Taniguchi T, Nishida M, Sa-kurai R, Wakao Y, Nakajima K (2020) Input-driven bifurcations and information processing capacity in spintronics reservoirs. Phys Rev Res 2(4):043303

    Article  Google Scholar 

  • Akashi N, Kuniyoshi Y, Tsunegi S, Taniguchi T, Nishida M, Sakurai R, Wakao Y, Kawashima K, Nakajima K (2022) A coupled spintronics neuromorphic approach for high-performance reservoir computing. Adv Intell Syst 4:2200123

    Article  Google Scholar 

  • Appeltant L, Soriano MC, Van der Sande G, Danckaert J, Mas-sar S, Dambre J, Schrauwen B, Mirasso CR, Fischer I (2011) Information processing using a single dynamical node as complex system. Nat Commun 2(1):1–6

    Article  Google Scholar 

  • Beal DN, Hover FS, Triantafyllou MS, Liao JC, Lauder GV (2006) Passive propulsion in vortex wakes. J Fluid Mech 549:385–402

    Article  Google Scholar 

  • Blackiston D, Lederer E, Kriegman S, Garnier S, Bongard J, Levin M (2021) A cellular platform for the development of synthetic living machines. Sci Robot 6(52):eabf1571

    Google Scholar 

  • Bongard J (2013) Evolutionary robotics. Commun ACM 56(8):74–83

    Article  Google Scholar 

  • Braitenberg V (1986) Vehicles: Experiments in synthetic psychology. MIT Press

    Google Scholar 

  • Brooks R (1986) A robust layered control system for a mobile robot. IEEE J Robot Autom 2(1):14–23

    Article  Google Scholar 

  • Brown E, Rodenberg N, Amend J, Mozeika A, Steltz E, Zakin MR, Lipson H, Jaeger HM (2010) Universal robotic gripper based on the jamming of granular material. Proc Natl Acad Sci 107(44):18809–18814

    Article  Google Scholar 

  • Brunner D, Soriano MC, Mirasso CR, Fischer I (2013) Parallel photonic information processing at gigabyte per second data rates using transient states. Nat Commun 4(1):1–7

    Article  Google Scholar 

  • Caluwaerts K, D’Haene M, Verstraeten D, Schrauwen B (2013) Locomotion without a brain: physical reservoir computing in tensegrity structures. Artif Life 19(1):35–66

    Article  Google Scholar 

  • Caluwaerts K, Despraz J, Işçen A, Sabelhaus AP, Bruce J, Schrauwen B, SunSpiral V (2014) Design and control of compliant tensegrity robots through simulation and hardware validation. J R Soc Interface 11(98):20140520

    Article  Google Scholar 

  • Cheney N, Bongard J, SunSpiral V, Lipson H (2018) Scalable co-optimization of morphology and control in embodied machines. J R Soc Interface 15(143):20170937

    Article  Google Scholar 

  • Cliff D, Husbands P, Harvey I (1993) Explorations in evolutionary robotics. Adapt Behav 2(1):73–110

    Google Scholar 

  • Coleman MJ, Ruina A (1998) An uncontrolled walking toy that cannot stand still. Phys Rev Lett 80(16):3658

    Article  Google Scholar 

  • Collins SH, Wisse M, Ruina A (2001) A three-dimensional passive-dynamic walking robot with two legs and knees. Int J Robot Res 20(7):607–615

    Article  Google Scholar 

  • Corucci F, Cheney N, Giorgio-Serchi F, Bongard J, Laschi C (2018) Evolving soft locomotion in aquatic and terrestrial environments: effects of material properties and environmental transitions. Soft Rob 5(4):475–495

    Article  Google Scholar 

  • Corucci F, Cheney N, Lipson H, Laschi C, Bongard J (2016) Evolving swimming soft-bodied creatures. In: ALIFE XV, the fifteenth international conference on the synthesis and simulation of living systems, late breaking proceedings, vol 6

    Google Scholar 

  • Crutchfield JP, Farmer JD, Huberman BA (1982) Fluctuations and simple chaotic dynamics. Phys Rep 92(2):45–82

    Article  MathSciNet  Google Scholar 

  • Dambre J, Verstraeten D, Schrauwen B, Massar S (2012) Information processing capacity of dynamical systems. Sci Rep 2(1):1–7

    Article  Google Scholar 

  • Dambre J, Katumba A, Ma C, Sackesyn S, Laporte F, Freiberger M, Bienstman P (2021) Computing with integrated photonic reservoirs. In: Reservoir Computing. Springer, Singapore, pp 397–419

    Google Scholar 

  • Fernando C, Sojakka S (2003) Pattern recognition in a bucket. In European conference on artificial life. Springer, Berlin, Heidelberg, pp 588–597

    Google Scholar 

  • Floreano D, Mondada F (1996) Evolution of homing navigation in a real mobile robot. IEEE Trans Syst, Man, Cybern, Part B (Cybern) 26(3):396–407

    Google Scholar 

  • Fujii K, Nakajima K (2021) Quantum reservoir computing: a reservoir approach toward quantum machine learning on near-term quantum devices. In: Reservoir computing. Springer, Singapore, pp 423–450

    Google Scholar 

  • Fujii K, Nakajima K (2017) Harnessing disordered-ensemble quantum dynamics for machine learning. Phys Rev Appl 8(2):024030

    Article  Google Scholar 

  • Furuta T, Fujii K, Nakajima K, Tsunegi S, Kubota H, Suzuki Y, Miwa S (2018) Macromagnetic simulation for reservoir computing utilizing spin dynamics in magnetic tunnel junctions. Phys Rev Appl 10(3):034063

    Article  Google Scholar 

  • Ghosh S, Nakajima K, Krisnanda T, Fujii K, Liew TC (2021) Quantum neuromorphic computing with reservoir computing networks. Adv Quant Technol 4(9):2100053

    Article  Google Scholar 

  • Goto K, Nakajima K, Notsu H (2021) Twin vortex computer in fluid flow. New J Phys 23(6):063051

    Article  MathSciNet  Google Scholar 

  • Gracovetsky S (1988) The spinal engine. Springer Verlag GmbH

    Google Scholar 

  • Haruna T, Nakajima K (2019) Optimal short-term memory before the edge of chaos in driven random recurrent networks. Phys Rev E 100(6):062312

    Article  Google Scholar 

  • Harvey I, Husbands P, Cliff D, Thompson A, Jakobi N (1997) Evolutionary robotics: the Sussex approach. Robot Auton Syst 20(2–4):205–224

    Article  Google Scholar 

  • Hauser H, Ijspeert AJ, Füchslin RM, Pfeifer R, Maass W (2011) Towards a theoretical foundation for morphological computation with compliant bodies. Biol Cybern 105(5):355–370

    Article  MathSciNet  MATH  Google Scholar 

  • Hermans M, Schrauwen B, Bienstman P, Dambre J (2014) Automated design of complex dynamic systems. PLoS ONE 9(1):e86696

    Article  Google Scholar 

  • Hiller J, Lipson H (2014) Dynamic simulation of soft multimaterial 3d-printed objects. Soft Rob 1(1):88–101

    Article  Google Scholar 

  • Inoue K, Kuniyoshi Y, Kagaya K, Nakajima K (2022) Skeletonizing the dynamics of soft-continuum body from video. Soft Rob 9(2):201–211

    Article  Google Scholar 

  • Inoue K, Nakajima K, Kuniyoshi Y (2020) Designing spontaneous behavioral switching via chaotic itinerancy. Sci Adv 6(46):eabb3989

    Google Scholar 

  • Inubushi M, Yoshimura K, Ikeda Y, Nagasawa Y (2021) On the characteristics and structures of dynamical systems suitable for reservoir computing. In: Reservoir computing. Springer, Singapore, pp 97–116

    Google Scholar 

  • Jaeger H (2001a) The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148(34):13

    Google Scholar 

  • Jaeger H (2001b) Short term memory in echo state networks, vol 5. GMD-Forschungszentrum Informationstechnik, Bremen, Germany

    Google Scholar 

  • Jaeger H (2021a) Foreword to the book reservoir computing: theory, physical implementations, and applications. In: Reservoir computing: theory, physical implementations, and applications (pp V–X). Springer Nature

    Google Scholar 

  • Jaeger H (2021b) Foreword to the book reservoir computing: theory, physical implementations, and applications. Natural Computing Series. Springer Nature, pp V–X

    Google Scholar 

  • Kagaya K, Yu B, Minami Y, Nakajima K (2022, April) Echo state property and memory in octopus-inspired soft robotic arm. In: 2022 IEEE 5th International conference on soft robotics (RoboSoft). IEEE, pp 224–230

    Google Scholar 

  • Kan S, Nakajima K, Asai T, Akai-Kasaya M (2022) Physical implementation of reservoir computing through electrochemical reaction. Adv Sci 9(6):2104076

    Article  Google Scholar 

  • Kang R, Branson DT, Guglielmino E, Caldwell DG (2012) Dynamic modeling and control of an octopus inspired multiple continuum arm robot. Comput Math Appl 64(5):1004–1016

    Article  MATH  Google Scholar 

  • Kanno K, Uchida A (2021) Performance improvement of delay-based photonic reservoir computing. In: Reservoir computing. Springer, Singapore, pp 377–396

    Google Scholar 

  • Kitani M, Hara T, Sawada H (2011) Autonomous voice acquisition of a talking robot based on topological structure learning by applying dual-SOM. Trans Jpn Soc Mech Eng Ser C 77(775)

    Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Article  MathSciNet  MATH  Google Scholar 

  • Kohonen T (1989) Self-organization and associative memory. Springer-Verlag, Berlin, third edition

    Book  MATH  Google Scholar 

  • Kohonen T (1998) The self-organizing map. Neurocomputing 21:1–6

    Article  MATH  Google Scholar 

  • Kriegman S, Blackiston D, Levin M, Bongard J (2020) A scalable pipeline for designing reconfigurable organisms. Proc Natl Acad Sci 117(4):1853–1859

    Article  Google Scholar 

  • Kubota T, Takahashi H, Nakajima K (2021) Unifying framework for information processing in stochastically driven dynamical systems. Phys Rev Res 3:043135

    Article  Google Scholar 

  • Kubota T, Nakajima K, Takahashi H (2019) Echo state property of neuronal cell cultures. In: International conference on artificial neural networks. Springer, Cham, pp 137–148

    Google Scholar 

  • Kuwabara J, Nakajima K, Kang R, Branson DT, Guglielmino E, Caldwell DG, Pfeifer R (2012) Timing-based control via echo state network for soft robotic arm. In The 2012 international joint conference on neural networks (IJCNN). IEEE, pp 1–8

    Google Scholar 

  • Laje R, Buonomano DV (2013) Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat Neurosci 16(7):925–933

    Article  Google Scholar 

  • Larger L, Soriano MC, Brunner D, Appeltant L, Gutiérrez JM, Pes-quera L, Mirasso CR, Fischer I (2012) Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt Express 20(3):3241–3249

    Article  Google Scholar 

  • Larger L, Baylón-Fuentes A, Martinenghi R, Udaltsov VS, Chembo YK, Jacquot M (2017) High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys Rev X 7(1):011015

    Google Scholar 

  • Li T, Nakajima K, Kuba M, Gutnick T, Hochner B, Pfeifer R (2011) From the octopus to soft robots control: An octopus inspired behavior control ar-chitecture for soft robots. Vie et milieu 61(4):211–217

    Google Scholar 

  • Li T, Nakajima K, Calisti M, Laschi C, Pfeifer R (2012a) Octopus-inspired sensorimotor control of a multi-arm soft robot. In: 2012a IEEE International conference on mechatronics and automation. IEEE, pp 948–955

    Google Scholar 

  • Li T, Nakajima K, Cianchetti M, Laschi C, Pfeifer R (2012b) Behavior switching using reservoir computing for a soft robotic arm. In: 2012b IEEE International conference on robotics and automation. IEEE, pp 4918–4924

    Google Scholar 

  • Li T, Nakajima K, Pfeifer R (2013) Online learning for behavior switching in a soft robotic arm. In: 2013 IEEE International conference on robotics and automation. IEEE, pp 1296–1302

    Google Scholar 

  • Liao JC (2004) Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait. J Exp Biol 207(20):3495–3506

    Article  Google Scholar 

  • Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) Fish exploiting vortices decrease muscle activity. Science 302(5650):1566–1569

    Article  Google Scholar 

  • Lipson H, Pollack JB (2000) Automatic design and manufacture of robotic lifeforms. Nature 406(6799):974–978

    Article  Google Scholar 

  • Loo JY, Ding ZY, Baskaran VM, Nurzaman SG, Tan CP (2022) Robust multimodal indirect sensing for soft robots via neural network-aided filter-based estimation. Soft Rob 9(3):591–612

    Article  Google Scholar 

  • Lu Z, Hunt BR, Ott E (2018) Attractor reconstruction by machine learning. Chaos: An Interdisc J Nonlinear Sci 28(6):061104

    Google Scholar 

  • Maass W, Natschläger T, Markram H (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14(11):2531–2560

    Article  MATH  Google Scholar 

  • Majmudar TS, Sperl M, Luding S, Behringer RP (2007) Jamming transition in granular systems. Phys Rev Lett 98(5):058001

    Article  Google Scholar 

  • Manjunath G, Jaeger H (2013) Echo state property linked to an input: exploring a fundamental characteristic of recurrent neural networks. Neural Comput 25(3):671–696

    Article  MathSciNet  MATH  Google Scholar 

  • Massar M, Massar S (2013) Mean-field theory of echo state net-works. Phys Rev E 87(4):042809

    Article  Google Scholar 

  • Matsumoto K, Tsuda I (1983) Noise-induced order. J Stat Phys 31(1):87–106

    Article  MathSciNet  Google Scholar 

  • McGeer T (1990) Passive dynamic walking. Int J Robot Res 9(2):62–82

    Article  Google Scholar 

  • Miyatoda A, Shigemune H, Miwa T, Sawada H (2019) A tactile sensor using a shape-memory alloy wire during vibration. IEICE Trans J102-C(9):241–248

    Google Scholar 

  • Molgedey L, Schuchhardt J, Schuster HG (1992) Suppressing chaos in neural networks by noise. Phys Rev Lett 69(26):3717

    Article  Google Scholar 

  • Nakajima K (2020) Physical reservoir computing: an introductory perspective. Jpn J Appl Phys 59(6):060501

    Article  Google Scholar 

  • Nakajima K, Li T, Hauser H, Pfeifer R (2014) Exploiting short-term memory in soft body dynamics as a computational resource. J R Soc Interface 11(100):20140437

    Article  Google Scholar 

  • Nakajima K, Fujii K, Negoro M, Mitarai K, Kitagawa M (2019) Boosting computational power through spatial multiplexing in quantum reservoir computing. Phys Rev Appl 11(3):034021

    Article  Google Scholar 

  • Nakajima K, Fischer I (2021) Reservoir computing: theory, physical implementations, and applications. Springer, Singapore

    Google Scholar 

  • Nakajima K, Hauser H, Kang R, Guglielmino E, Caldwell DG, Pfeifer R (2013a) Computing with a muscular-hydrostat system. In: 2013a IEEE international conference on robotics and automation. IEEE, pp 1504–1511

    Google Scholar 

  • Nakajima K, Hauser H, Kang R, Guglielmino E, Caldwell DG, Pfeifer R (2013) A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front Comput Neurosci 7:91

    Google Scholar 

  • Nakajima K, Hauser H, Li T, Pfeifer R (2015a) Information processing via physical soft body. Sci Rep 5:10487

    Google Scholar 

  • Nakajima K, Schmidt N, Pfeifer R (2015b) Measuring information transfer in a soft robotic arm. Bioinspiration Biomimetics 10(3):035007

    Google Scholar 

  • Nakajima K, Hauser H, Li T, Pfeifer R (2018) Exploiting the dynamics of soft materials for machine learning. Soft Robot 5(3): 339–347

    Google Scholar 

  • Nakajima K, Inoue K, Kuniyoshi Y, Somlor S, Tomo TP, Schmitz A (2018b) Soft keyboard: a novel user interface for soft devices. In Proceedings of the international symposium on nonlinear theory and its applications (NOLTA2018b), pp 147–150

    Google Scholar 

  • Nakajima K (2017) Muscular-hydrostat computers: physical reservoir computing for octopus-inspired soft robots. In: Brain evolution by design. Springer, Tokyo, pp 403–414

    Google Scholar 

  • Nolfi S, Floreano D (2000) Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. MIT Press

    Google Scholar 

  • Pathak J, Hunt B, Girvan M, Lu Z, Ott E (2018) Modelfree prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys Rev Lett 120:024102

    Article  Google Scholar 

  • Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821

    Article  MathSciNet  MATH  Google Scholar 

  • Pfeifer R, Scheier C (1997) Sensory- motor coordination: the metaphor and beyond. Robot Auton Syst 20(2–4):157–178

    Article  Google Scholar 

  • Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and biologically inspired robotics. Science 318(5853):1088–1093

    Article  Google Scholar 

  • Pfeifer R, Bongard J (2006) How the body shapes the way we think: a new view of intelligence. MIT Press

    Google Scholar 

  • Pfeifer R, Scheier C (2010) Understanding intelligence. MIT Press

    Google Scholar 

  • Pieters O, De Swaef T, Stock M (2022) Leveraging plant physio-logical dynamics using physical reservoir computing. Sci Rep 12(1):1–14

    Article  Google Scholar 

  • Riou M, Torrejon J, Abreu Araujo F, Tsunegi S, Khalsa G, Querlioz D, Bortolotti P, Leroux N, Marković D, Cros V, Yakushiji K, Fukushima A, Ku-bota H, Yuasa S, Stiles MD, Grollier J (2021) Reservoir computing leveraging the transient non-linear dynamics of spin-torque nano-oscillators. In: Reservoir computing. Springer, Singapore, pp 307–329

    Google Scholar 

  • Sakurai R, Nishida M, Jo T, Wakao Y, Nakajima K (2022) Durable pneumatic artificial muscles with electric conductivity for reliable physical reservoir computing. J Robot Mechatron 34(2):240–248

    Article  Google Scholar 

  • Sakurai R, Nishida M, Sakurai H, Wakao Y, Akashi N, Kuniyoshi Y, Minami Y, Nakajima K (2020) Emulating a sensor using soft material dynamics: a reservoir computing approach to pneumatic artificial muscle. In: 2020 3rd IEEE International conference on soft robotics (RoboSoft). IEEE, pp 710–717

    Google Scholar 

  • Sawada H (2015) A talking robot and its autonomous learning of speech articulation for producing expressive speech. Emergent Trends Robot Intell Syst, Adv Intell Syst Comput 316:93–102

    Google Scholar 

  • Sims K (1994) Evolving 3D morphology and behavior by competition. Artif Life 1(4):353–372

    Article  Google Scholar 

  • Snyder D, Goudarzi A, Teuscher C (2013) Computational capabilities of random automata networks for reservoir computing. Phys Rev E 87(4):042808

    Article  Google Scholar 

  • Soter G, Hauser H, Conn A, Rossiter J, Nakajima K (2020, October) Shape reconstruction of CCD camera-based soft tactile sensors. In: 2020 IEEE/RSJ International conference on intelligent robots and systems (IROS). IEEE, pp 8957–8962

    Google Scholar 

  • Sun W, Akashi N, Kuniyoshi Y, Nakajima K (2022b) Self-organization of physics-informed mechanisms in recurrent neural networks: a case study in pneumatic artificial muscles. In: 2022b IEEE 5th International conference on soft robotics (RoboSoft). IEEE, pp 409–415

    Google Scholar 

  • Sun W, Akashi N, Kuniyoshi Y, Nakajima K (2021) Physics-informed reservoir computing with autonomously switching readouts: a case study in pneumatic artificial muscles. In: 2021 International symposium on micro-nanomehatronics and human science (MHS). IEEE, pp 1–6

    Google Scholar 

  • Sun W, Akashi N, Kuniyoshi Y, Nakajima K (2022) Physics-informed recurrent neural networks for soft pneumatic actuators. IEEE Robot Autom Lett 7(3):6862–6869

    Google Scholar 

  • Sussillo D, Abbott LF (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4):544–557

    Article  Google Scholar 

  • Tanaka G, Yamane T, Héroux JB, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D, Hirose A (2019) Recent advances in physical reservoir computing: a review. Neural Netw 115:100–123

    Article  Google Scholar 

  • Tanaka K, Yang S-H, Tokudome Y, Minami Y, Lu Y, Arie T, Akita S, Takei K, Nakajima K (2021) Flapping-wing dynamics as a natural detector of wind direction. Adv Intell Syst 3:2000174

    Article  Google Scholar 

  • Tanaka K., Minami Y, Tokudome Y, Inoue K, Kuniyoshi Y, Nakajima K (2022a) Continuum-body-pose estimation from partial sensor information using recurrent neural networks. IEEE Robot Autom Lett 7(4):11244–11251

    Google Scholar 

  • Tanaka K, Tokudome Y, Minami Y, Honda S, Nakajima T, Takei K, Nakajima K (2022) Self-organization of remote reservoirs: transferring computation to spatially distant locations. Adv Intell Syst 4:2100166

    Google Scholar 

  • Tani J (2016) Exploring robotic minds: actions, symbols, and con-sciousness as self-organizing dynamic phenomena. Oxford University Press

    Book  Google Scholar 

  • Taniguchi T, Tsunegi S, Miwa S, Fujii K, Kubota H, Nakajima K (2021) Reservoir computing based on Spintronics technology. In: Reservoir computing. Springer, Singapore, pp 331–360

    Google Scholar 

  • Thanh NV, Sawada H (2016) A talking robot and its real-time interactive modification for speech clarification. SICE J Control, Meas, Syst Integr 9(6):251–256

    Article  Google Scholar 

  • Thuruthel TG, Shih B, Laschi C, Tolley MT (2019) Soft robot perception using embedded soft sensors and recurrent neural networks. Sci Robot 4(26):eaav1488

    Google Scholar 

  • Tomo TP, Wong WK, Schmitz A, Kristanto H, Sarazin A, Jamone L, Somlor S, Sugano S (2016) A modular, distributed, soft, 3-axis sensor system for robot hands. In: 2016 IEEE-RAS 16th international conference on humanoid robots (humanoids). IEEE, pp 454–460

    Google Scholar 

  • Torrejon J, Riou M, Araujo FA, Tsunegi S, Khalsa G, Querlioz D, Bortolotti P, Cros V, Yakushiji K, Fukushima A, Kubota H, Yuasa S, Stiles MD, Grollier J (2017) Neuromorphic computing with nanoscale spintronic oscillators. Nature 547(7664):428–431

    Article  Google Scholar 

  • Tran QH, Nakajima K (2021) Learning temporal quantum tomography. Phys Rev Lett 127(26):260401

    Article  MathSciNet  Google Scholar 

  • Trivedi D, Rahn CD, Kier WM, Walker ID (2008) Soft robotics: biological inspiration, state of the art, and future research. Appl Bionics Biomech 5(3):99–117

    Article  Google Scholar 

  • Tsunegi S, Taniguchi T, Miwa S, Nakajima K, Yakushiji K, Fu-kushima A, Yuasa S, Kubota H (2018) Evaluation of memory capacity of spin torque oscillator for recurrent neural networks. Jpn J Appl Phys 57(12):120307

    Article  Google Scholar 

  • Tsunegi S, Taniguchi T, Nakajima K, Miwa S, Yakushiji K, Fu-kushima A, Yuasa S, Kubota H (2019) Physical reservoir computing based on spin torque oscillator with forced synchronization. Appl Phys Lett 114:164101

    Article  Google Scholar 

  • Ushio M, Watanabe K, Fukuda Y, Tokudome Y, Nakajima K (2021) Computational capability of ecological dynamics. bioRxiv

    Google Scholar 

  • Vandoorne K, Mechet P, Van Vaerenbergh T, Fiers M, Mor-thier G, Verstraeten D, Schrauwen B, Dambre J, Bienstman P (2014) Experimental demonstration of reservoir computing on a silicon photonics chip. Nat Commun 5(1):1–6

    Article  Google Scholar 

  • Verstraeten D, Schrauwen B, d’Haene M, Stroobandt D (2007) An experimental unification of reservoir computing methods. Neural Netw 20(3):391–403

    Article  MATH  Google Scholar 

  • Wakabayashi S, Arie T, Akita S, Nakajima K, Takei K (2022) A multitasking flexible sensor via reservoir computing. Adv Mater 34:2201663

    Article  Google Scholar 

  • Wright LG, Onodera T, Stein MM, Wang T, Schachter DT, Hu Z, McMahon PL (2022) Deep physical neural networks trained with backpropagation. Nature 601(7894):549–555

    Article  Google Scholar 

  • Wyffels F, Schrauwen B (2009) Design of a central pattern generator using reservoir computing for learning human motion. In: 2009 Advanced technologies for enhanced quality of life. IEEE, pp 118–122

    Google Scholar 

  • Yada Y, Yasuda S, Takahashi H (2021) Physical reservoir computing with FORCE learning in a living neuronal culture. Appl Phys Lett 119(17):173701

    Article  Google Scholar 

  • Yildiz IB, Jaeger H, Kiebel SJ (2012) Re-visiting the echo state property. Neural Netw 35:1–9

    Article  MATH  Google Scholar 

  • Zhao Q, Nakajima K, Sumioka H, Hauser H, Pfeifer R (2013) Spine dynamics as a computational resource in spine-driven quadruped locomotion. In: 2013 IEEE/RSJ International conference on intelligent robots and systems. IEEE, pp 1445–1451

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohei Nakajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakajima, K., Sawada, H., Akashi, N. (2023). Information Processing Using Soft Body Dynamics. In: Suzumori, K., Fukuda, K., Niiyama, R., Nakajima, K. (eds) The Science of Soft Robots. Natural Computing Series. Springer, Singapore. https://doi.org/10.1007/978-981-19-5174-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5174-9_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5173-2

  • Online ISBN: 978-981-19-5174-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics