Skip to main content

Material Intelligence

  • Chapter
  • First Online:
The Science of Soft Robots

Abstract

This chapter describes soft robots that use biological and chemical materials. The authors will introduce some attempts to regard them not only as a mere frame of a robot, but also as elements that process information. Section 14.1 describes the use of chemical oscillations in actuators. Section 14.2 described the classification of biomaterials as information processing machines. Section 14.3 discusses the formation of spatial patterns and rhythms by bacteria and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamatzky A, De Lacy CB, Asai T (2005) Reaction-diffusion computers. Elsevier, New York

    Google Scholar 

  • Adleman L (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  Google Scholar 

  • Alberts B, Jhonson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell, 6th edn. Garland Science, New York

    Google Scholar 

  • Anish PD, Misra GP, Siegel RA (2002) J Phys Chem A 106(38):8835–8838

    Article  Google Scholar 

  • Bessho Y, Hirata H, Masamizu Y, Kageyama R (2003) Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev 17:1451–1456

    Article  Google Scholar 

  • Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, Christina Fan H, Cordes Metzler KR, Panagiotakos G, Thom N, O’Rourke NA, Steinmetz LM, Bernstein JA, Hallmayer J, Huguenard JR, Paşca SP (2017) Assembly of functionally integrated human forebrain spheroids. Nature 22:54–59

    Google Scholar 

  • Buck J, Buck E (1966) Biology of synchronous flashing of fireflies. Nature 211:562–564

    Article  Google Scholar 

  • Couzin ID, Krause J, James R, Ruxton GD, Franks NR (2002) Collective memory and spatial sorting in animal groups. J Theor Biol 218:1–11

    Article  MathSciNet  Google Scholar 

  • Crook CJ, Smith A, Jones AL, Ryan A (2002) J Phys Chem Phys 4:1367–1369

    Article  Google Scholar 

  • Dhanarajan AP, Misra GP, Siegel RA (2002) Autonomous chemomechanical oscillations in a hydrogel/enzyme system driven by glucose. J Phys Chem A 106:8835–8838

    Google Scholar 

  • Danino T, Mondragón-Palomino O, Tsimring L, Hasty JA (2010) Synchronized quorum of genetic clocks. Nature 463:326–330

    Article  Google Scholar 

  • Dullerud GE, Paganini FA (2000) A course in robust control theory. Texts Appl Math 36:281–307

    Article  MATH  Google Scholar 

  • Dunlap JC, Loros JJ, Decoursey PJ (2003) Chronobiology: biological timekeeping. Sinauer Associates, Massachusetts

    Google Scholar 

  • Elowitz MB, Leibler SA (2000) Synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    Article  Google Scholar 

  • Field RJ, Burger M (1985) Oscillations and traveling waves in chemical systems. John Wiley & Sons, New York

    Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, London

    Google Scholar 

  • Fukuda H, Murase H, Tokuda IT (2013) Controlling circadian rhythms by dark-pulse perturbations in Arabidopsis thaliana. Sci Rep 3:1–7

    Article  Google Scholar 

  • Giandomenico SL, Mierau SB, Gibbons GM, Wenger LMD, Masullo L, Sit T, Sutcliffe M, Boulanger J, Tripodi M, Derivery E, Paulsen O, Lakatos A, Lancaster MA (2019) Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output: Nat Neurosci 22:669–679

    Google Scholar 

  • Gladkov A, Pigareva Y, Kutyina D, Kolpakov V, Bukatin A, Mukhina I, Kazantsev V, Pimashkin A (2017) Design of cultured neuron networks in vitro with predefined connectivity using asymmetric microfluidic channels. Sci Rep 7:15625

    Google Scholar 

  • Goodwin BC (1965) Oscillatory behavior in enzymatic control processes. Adv Enzyme Regul 3:425–438

    Article  Google Scholar 

  • Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51:4282–4286

    Article  Google Scholar 

  • Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R (2002) Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298:840–843

    Article  Google Scholar 

  • Ito H, Kageyama H, Mutsuda M et al (2007) Autonomous synchronization of the circadian KaiC phosphorylation rhythm. Nat Struct Mol Biol 14:1084–1088

    Article  Google Scholar 

  • Iwasaki H, Nishiwaki T, Kitayama Y et al (2002) KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria. Proc Natl Acad Sci USA 99:15788–15793

    Article  Google Scholar 

  • Johnson CH, Rust MJ (2021) Circadian rhythms in bacteria and microbiomes. Springer, Cham, Switzerland

    Book  Google Scholar 

  • Karig D et al (2018) Stochastic turing patterns in a synthetic bacterial population. Proc Natl Acad Sci 115:6572–6577

    Google Scholar 

  • Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:1616–1620

    Google Scholar 

  • Kondo S, Asai R (1995) A reaction-diffusion wave on the skin of the marine angelfish pomacanthus. Nature 376:765–768

    Article  Google Scholar 

  • Kontop Y, Nashimova I R, Rambidi N G, and Khokhlov A R (2011) Chemomechanical oscillations in polymer gels: effect of the size of samples. Polym Sci Ser B 53:121–125

    Google Scholar 

  • Kuldell N, Bernstein R, Ingram K, Hart KM (2015) Biobuilder: synthetic biology in the lab. O’Reilly Media, California

    Google Scholar 

  • Kuramoto Y (2012) Chemical oscillations, waves, and turbulence. Springer Science and Business Media, Berlin

    MATH  Google Scholar 

  • Kurosawa G, Mochizuki A, Iwasa Y (2002) Comparative study of circadian clock models, in search of processes promoting oscillation. J Theor Biol 216:193–208

    Article  MathSciNet  Google Scholar 

  • Labrot V, Kepper P D, Boissonade J, Szalai I, and Gauffre F (2005) Wave patterns driven by chemomechanical instabilities in responsive gels 109:21476–21480

    Google Scholar 

  • Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379

    Article  Google Scholar 

  • Li Z, Yang Q (2018) Systems and synthetic biology approaches in understanding biological oscillators. Quant Biol 6:1–14

    Article  Google Scholar 

  • Maeda S, Hara Y, Sakai T, Yoshida R, and Hashimoto S (2007) Self-walking gel. Adv Mater 21:3480

    Google Scholar 

  • Maeda S, Hara Y, Yoshida R, and Hashimoto S (2008) Peristaltic motion of polymer gels. Angew Chem Int Ed 47:6690

    Google Scholar 

  • Maeda S, Kato T, Otsuka Y, Hosoya N, Matteo C, and Laschi C (2016) Large deformation of self-oscillating polymer gel, Phys Rev E 93:010501(R)

    Google Scholar 

  • Moore GE (1965) Cramming more components onto integrated circuits. Electronics 114–117

    Google Scholar 

  • Murayama Y, Kori H, Oshima C et al (2017) Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation. Proc Natl Acad Sci USA 114:5641–5646

    Article  Google Scholar 

  • Nagy M, Akos Z, Biro D, Vicsek TH (2010) Hierarchical group dynamics in pigeon flocks. Nature 464:890–893

    Article  Google Scholar 

  • Nikonov DE, Csaba G, Porod W et al. (2015) Coupled-oscillator associative memory array operation for pattern recognition. IEEE J Explor Solid-State Comput Devices Circuits 1:85–93

    Article  Google Scholar 

  • Nakajima M, Imai K, Ito H et al (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308:414–415

    Article  Google Scholar 

  • Nakamaru S, Maeda S, Hara Y, and Hashimoto S (2005) Control of autonomous swelling-deswelling behavior for a polymer gel. J Phys Chem B 113:4609–4613

    Google Scholar 

  • Nobel Prize Outreach AB (2017) Discoveries of molecular mechanisms controlling the circadian rhythm. https://www.nobelprize.org/prizes/medicine/2017/advanced-information/, Accessed 25 Dec 2021

  • Novère NL (2013) Elowitz2000–Repressilator. BioModels. https://www.ebi.ac.uk/biomodels/BIOMD0000000012/, Accessed 25 Dec 2021

  • Pojman JA, and Tran-Cong-Miyata Q, Eds. Nonlinear dynamics in polymeric systems. ACS Symp Ser 869

    Google Scholar 

  • Phillips R, Kondev J, Theriot J, Garcia HG, Orme N (2012) Physical biology of the cell. Garland Science, New York

    Book  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2003) Synchronization: a universal concept in nonlinear sciences. Cambridge Univ Press, Cambridge

    MATH  Google Scholar 

  • Pismen L (2021) Active matter within and around us: from self-propelled particles to flocks and living forms. Springer, Cham, Switzerland

    Book  Google Scholar 

  • Sakamoto K et al (2021) Emergent synchronous beating behavior in spontaneous beating cardiomyocyte clusters. Sci Rep 11:1–2

    Article  Google Scholar 

  • Sekine R, Shibata T, Ebisuya M (2018) Synthetic mammalian pattern formation driven by differential diffusivity of Nodal and Lefty. Nat Commun 9:5456

    Article  Google Scholar 

  • Shimizu M, Fujie T, Umedachi T, Shigaki S, Kawashima H, Saito M, Ohashi H, Hosoda K (2020) Self-healing cell tactile sensor fabricated using ultraflexible printed electrodes. In: Proceedings of the 2020 IEEE/RSJ international conference on intelligent robots and systems, pp 8932–8938

    Google Scholar 

  • Steinbock O, Kettunen P, Showalter K (1996) Chemical wave logic gates. J Phys Chem 100(49):18970–18975

    Article  Google Scholar 

  • Stricker J et al (2008) A fast, robust, and tunable synthetic gene oscillator. Nature 456:516–519

    Google Scholar 

  • Strogatz SH (2019) Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. CRC Press, Florida

    MATH  Google Scholar 

  • Sugi T, Ito H, Nishimura M, Nagai K H (2019) C. elegans collectively forms dynamical networks. Nat Commun 10:1

    Google Scholar 

  • Sumino Y, Nagai KH, Shitaka Y et al (2012) Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483:448–452

    Google Scholar 

  • Takashima Y, Ohtsuka T, González A, Miyachi H, Kageyama R (2011) Intronic delay is essential for oscillatory expression in the segmentation clock. Proc Natl Acad Sci 108:3300–3305

    Article  Google Scholar 

  • Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang R-R, Ueno Y, Zheng Y-W, Koike N, Aoyama S, Adachi Y, Taniguchi H (2013) Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–484

    Article  Google Scholar 

  • Tomita J, Nakajima M, Kondo T, Iwasaki H (2005) No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307:251–254

    Article  Google Scholar 

  • Turing AM (1990) The chemical basis of morphogenesis. Bull Math Biol 52:153–197

    Article  Google Scholar 

  • Uzel SGM, Platt RJ, Subramanian V, Pearl TM, Rowlands CJ, Chan V, Boyer LA, So PTC, Kamm RD (2016) Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units. Sci Adv 2:e1501429

    Google Scholar 

  • Vicsek T, Zafeiris A (2012) Collective motion. Phys Rep 517:71–140

    Article  Google Scholar 

  • Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75:1226–1229

    Article  MathSciNet  Google Scholar 

  • Wagner I, Materne E-M, Brincker S, Süβbier U, Frädrich C, Busek M, Sonntag F, Sakharov DA, Trushkin EV, Tonevitsky AG, Lauster R, Marx U (2013) A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture: lab on a chip 13:3538–3547

    Google Scholar 

  • Warwick K, Xydas D, Nasuto SJ, Becerra VM, Hammond MW, Downes JH, Marshall S, Whalley BJ (2010a) Controlling a mobile robot with a biological brain. Def Sci J 60(1):5–14

    Article  Google Scholar 

  • Warwick K, Xydas D, Nasuto SJ, Becerra VM, Hammond MW, Downes JH, Marshall S, Whallay BJ (2010b) Controlling a mobile robot with a biological brain. Defence Sci J 60(1):5–14

    Google Scholar 

  • Winfree AT (2001) The geometry of biological time. Springer, New York

    Book  MATH  Google Scholar 

  • Yamaguchi T, Kuhnert L, Nagy-Ungvarai Z, Mueller SC, Hess B (1991) Gel systems for the Belousov-Zhabotinskii reaction 95:5831–5837

    Google Scholar 

  • Yashin VV, Balazs AC (2007) Theoretical and computational modeling of self-oscillating polymer gels. J Chem Phys 126(124707):1–17

    Google Scholar 

  • Yashin VV, Kuksenok O, Dayal P, Balazs AC (2012) Mechano-chemical oscillations and waves in reactive gels. Rep Prog Phys 75(066601):1–40

    Google Scholar 

  • Yoshida R, Ichijo H, Hakuta T, Yamaguchi T (1995) Self-oscillating swelling and deswelling of polymer gels. Macromol Rapid Commun 16:305–310

    Article  Google Scholar 

  • Yoshida R, Takahashi T, Yamaguchi T, Ichijo H (1996) Self-oscillating gel. J Am Chem Soc 118:5134–5135

    Article  Google Scholar 

  • Yuan P, Kuksenok O, Gross DE, Balazs AC, Jeffrey SM JS, Nuzzo RG (2013) Soft Matter 9:1231–1243

    Google Scholar 

  • Zhabotinsky AM (1991) A history of chemical oscillations and waves. Chaos 1:379–386

    Article  Google Scholar 

  • Zon JS, van Lubensky DK, Altena PRH, ten Wolde PR (2007) An allosteric model of circadian KaiC phosphorylation. Proc Natl Acad Sci 104:7420–7425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yamada, Y., Maeda, S., Furusawa, K., Shimizu, M., Ito, H., Sugi, T. (2023). Material Intelligence. In: Suzumori, K., Fukuda, K., Niiyama, R., Nakajima, K. (eds) The Science of Soft Robots. Natural Computing Series. Springer, Singapore. https://doi.org/10.1007/978-981-19-5174-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5174-9_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5173-2

  • Online ISBN: 978-981-19-5174-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics