Skip to main content

Principles of Precision Medicine

  • Chapter
  • First Online:
Precision Medicine in Clinical Practice

Abstract

Precision medicine principles have long been a pillar of medical practice. Precision (personalized) medicine is a new medical approach that uses a patient’s genetic profile to guide decisions about disease prevention, diagnosis, and treatment. The goal of precision medicine is to combine current medicine with molecular breakthroughs to target patients individually and increase the efficacy and effectiveness of the therapeutic strategy. Pharmacogenomics (PGx) is one of the most important components of personalized medicine now used to describe how various genetic variants throughout the genome can affect drug response, whereas pharmacogenetics is the study of single DNA variation related to the drug response. The concept of precision medicine appears to hold promising results, and some of the potential benefits of precision medicine are increasing the effectiveness of care, preventive medicine, cost-effectiveness, new disease taxonomy, and population healthcare. In this chapter, we present a review of principles of precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gameiro GR, Sinkunas V, Liguori GR, Auler-Júnior JOC. Precision Medicine: changing the way we think about healthcare. Clinics. 2018;73:e723.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Seyhan AA, Carini C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J Transl Med. 2019;17(1):114.

    Article  PubMed  PubMed Central  Google Scholar 

  3. FS C, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372:793–5.

    Article  Google Scholar 

  4. Horne R, Bell JI, Montgomery JR, Ravn MO, Tooke JE. A new social contract for medical innovation. Lancet. 2015;385(9974):1153–4.

    Article  PubMed  Google Scholar 

  5. Gupta R, Kim J, Spiegel J, Ferguson SM. Developing products for personalized medicine: NIH research tools policy applications. Per Med. 2004;1(1):115–24.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carson PE, Flanagan CL, Ickes C, Alving AS. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science. 1956;124(3220):484–5.

    Article  CAS  PubMed  Google Scholar 

  7. Mahgoub A, Dring L, Idle J, Lancaster R, Smith R. Polymorphic hydroxylation of debrisoquine in man. Lancet. 1977;310(8038):584–6.

    Article  Google Scholar 

  8. Gibson WM. Can personalized medicine survive? Can Fam Physician. 1971;17(8):29.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Langreth BR, Waldholz M. New era of personalized medicine: targeting drugs for each unique genetic profile. Oncologist. 1999;4(5):426.

    Article  CAS  PubMed  Google Scholar 

  10. National Cancer Institute. NCI dictionary of cancer terms–personalized medicine. https://www.cancer.gov/publications/dictionaries/cancer-terms/def/personalized-medicine

  11. Abrahams E, Ginsburg GS, Silver M. The personalized medicine coalition. Am J Pharmacogenomics. 2005;5(6):345–55.

    Article  PubMed  Google Scholar 

  12. Moon H, Ahn H, Kodell RL, Baek S, Lin C-J, Chen JJ. Ensemble methods for classification of patients for personalized medicine with high-dimensional data. Artif Intell Med. 2007;41(3):197–207.

    Article  PubMed  Google Scholar 

  13. Meaney E, Sierra-Vargas P, Meaney A, Guzmán-Grenfell M, Ramírez-Sánchez I, Hicks JJ, et al. Erratum to “Does Metformin Increase Paraoxonase Activity in Patients with the Metabolic Syndrome? Additional Data from the MEFISTO Study”. Clin Transl Sci. 2015;8(6):873.

    Article  PubMed  Google Scholar 

  14. Hong K-W, Oh B. Overview of personalized medicine in the disease genomic era. BMB Rep. 2010;43(10):643–8.

    Article  CAS  PubMed  Google Scholar 

  15. Brand A. Public health genomics and personalized healthcare: a pipeline from cell to society. Drug Metabol Drug Interact. 2012;27(3):121–3.

    Article  CAS  PubMed  Google Scholar 

  16. Møldrup C. Beyond personalized medicine. Pers Med. 2009;6(3):231–3.

    Article  Google Scholar 

  17. Fierz W. Challenge of personalized health care: to what extent is medicine already individualized and what are the future trends? Med Sci Monit. 2004;10(5):RA111–RA23.

    PubMed  Google Scholar 

  18. Srivastava P. Drug metabolism and individualized medicine. Curr Drug Metab. 2003;4(1):33–44.

    Article  CAS  PubMed  Google Scholar 

  19. Gravitz L. The story “A Fight for Life that United a Field”. Nature. 2011;478:163–4.

    Article  CAS  PubMed  Google Scholar 

  20. Baker M. Reprogramming Rx. London: Nature Publishing Group; 2011.

    Book  Google Scholar 

  21. Hall JG. Individualized medicine. What the genetic revolution will bring to health care in the 21st century. Can Fam Physician. 2003;49:12.

    PubMed  PubMed Central  Google Scholar 

  22. Graham-Rowe D. Overview: multiple lines of attack. Nature. 2011;480(7377):S34–S5.

    Article  CAS  PubMed  Google Scholar 

  23. Boguski MS, Arnaout R, Hill C. Customized care 2020: how medical sequencing and network biology will enable personalized medicine. F1000 Biol Rep. 2009;1:73.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cancer Diagnosis Progran (CDP). Director’s Challenge: Toward a Molecular Classification of Cancer. https://cdpcancergov/scientific_programs/specs/1/challenge/directors_challenge_initiativehtm#:~:text=Classification%20of%20Cancer-,Overview,molecular%20alterations%20in%20human%20tumors (1999).

    Google Scholar 

  25. Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012;366(6):489–91.

    Article  PubMed  Google Scholar 

  26. Trusheim MR, Berndt ER, Douglas FL. Stratified medicine: strategic and economic implications of combining drugs and clinical biomarkers. Nat Rev Drug Discov. 2007;6(4):287–93.

    Article  CAS  PubMed  Google Scholar 

  27. Hood L. A personal journey of discovery: developing technology and changing biology. Annu Rev Anal Chem. 2008;1:1–43.

    Article  CAS  Google Scholar 

  28. Meyer UA. Pharmacogenetics–five decades of therapeutic lessons from genetic diversity. Nat Rev Genet. 2004;5(9):669–76.

    Article  CAS  PubMed  Google Scholar 

  29. Food and Drug Administration, HHS. International Conference on Harmonisation; Guidance on E15 Pharmacogenomics Definitions and Sample Coding; Availability. Notice. Fed Reg. 2008;73(68):19074.

    Google Scholar 

  30. Relling MV, Evans WE. Pharmacogenomics in the clinic. Nature. 2015;526(7573):343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Relling MV, Dervieux T. Pharmacogenetics and cancer therapy. Nat Rev Cancer. 2001;1(2):99–108.

    Article  CAS  PubMed  Google Scholar 

  32. Weinshilboum R, Wang L. Pharmacogenomics: bench to bedside. Discov Med. 2009;5(25):30–6.

    Google Scholar 

  33. Wheeler HE, Maitland ML, Dolan ME, Cox NJ, Ratain MJ. Cancer pharmacogenomics: strategies and challenges. Nat Rev Genet. 2013;14(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  34. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001;409(6822):928–34.

    Article  CAS  PubMed  Google Scholar 

  35. National Center for Biotechnology Information, National Library of Medicine. Database of single nucleotide polymorphisms (dbSNP). National Center for Biotechnology Information, National Library of Medicine… 2015.

    Google Scholar 

  36. Robert F, Pelletier J. Exploring the impact of single-nucleotide polymorphisms on translation. Front Genet. 2018;9:507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kasztura M, Richard A, Bempong N-E, Loncar D, Flahault A. Cost-effectiveness of precision medicine: a scoping review. Int J Public Health. 2019;64(9):1261–71.

    Article  PubMed  Google Scholar 

  38. Ginsburg GS, Phillips KA. Precision medicine: from science to value. Health Aff (Millwood). 2018;37(5):694–701.

    Article  Google Scholar 

  39. Mathur S, Sutton J. Personalized medicine could transform healthcare. Biomed Rep. 2017;7(1):3–5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shendure J, Findlay GM, Snyder MW. Genomic medicine–progress, pitfalls, and promise. Cell. 2019;177(1):45–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Horton RH, Lucassen AM. Recent developments in genetic/genomic medicine. Clin Sci (Lond). 2019;133(5):697–708.

    Article  Google Scholar 

  42. Ke X, Shen L. Molecular targeted therapy of cancer: the progress and future prospect. Front Lab Med. 2017;1(2):69–75.

    Article  Google Scholar 

  43. Seebacher N, Stacy A, Porter G, Merlot A. Clinical development of targeted and immune based anti-cancer therapies. J Exp Clin Cancer Res. 2019;38(1):156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. National Cancer Institute. Targeted Cancer Therapies. https://www.cancergov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet.

  45. Slastnikova TA, Ulasov AV, Rosenkranz AA, Sobolev AS. Targeted intracellular delivery of antibodies: the state of the art. Front Pharmacol. 2018;9:1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M, et al. The growing role of precision and personalized medicine for cancer treatment. Technology. 2018;6(03n04):79–100.

    Article  PubMed  Google Scholar 

  47. Masic I, Miokovic M, Muhamedagic B. Evidence based medicine–new approaches and challenges. Acta Inform Med. 2008;16(4):219.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Goldberger JJ, Buxton AE. Personalized medicine vs guideline-based medicine. JAMA. 2013;309(24):2559–60.

    Article  CAS  PubMed  Google Scholar 

  49. Tonelli MR, Shirts BH. Knowledge for precision medicine: mechanistic reasoning and methodological pluralism. JAMA. 2017;318(17):1649–50.

    Article  PubMed  Google Scholar 

  50. Kumar D. The personalised medicine: a paradigm of evidence-based medicine. Ann Ist Super Sanita. 2011;47:31–40.

    CAS  PubMed  Google Scholar 

  51. de Leon J. Evidence-based medicine versus personalized medicine: are they enemies? J Clin Psychopharmacol. 2012;32(2):153–64.

    Article  PubMed  Google Scholar 

  52. Drozda K, Pacanowski MA, Grimstein C, Zineh I. Pharmacogenetic labeling of FDA-approved drugs: a regulatory retrospective. JACC Basic Transl Sci. 2018;3(4):545–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Food and Drug Administration (ADA). Table of pharmacogenomic biomarkers in drug labeling (2018). https://www.fda.gov/drugs/science-and-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling

  54. National Human Genome Research Institute (NHGRI). Genomics and Medicine. https://www.genomegov/health/Genomics-and-Medicine

  55. Davies K. The era of genomic medicine. Clin Med. 2013;13(6):594.

    Article  Google Scholar 

  56. Rubanovich CK, Cheung C, Mandel J, Bloss CS. Physician preparedness for big genomic data: a review of genomic medicine education initiatives in the United States. Hum Mol Genet. 2018;27(R2):R250–R8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roden DM, Tyndale R. Genomic medicine, precision medicine, personalized medicine: what's in a name? Clin Pharmacol Ther. 2013;94(2):169–72.

    Article  CAS  PubMed  Google Scholar 

  58. Sykiotis GP, Kalliolias GD, Papavassiliou AG. Hippocrates and genomic medicine. Arch Med Res. 2006;37(1):181–3.

    Article  PubMed  Google Scholar 

  59. Raza S, Hall A. Genomic medicine and data sharing. Br Med Bull. 2017;123(1):1–11.

    Google Scholar 

  60. Manolio TA, Green ED. Leading the way to genomic medicine. Am J Med Genet C Semin Med Genet. 2014 Mar;166C(1):1–7.

    Article  PubMed  Google Scholar 

  61. Semiz S, Dujic T, Causevic A. Pharmacogenetics and personalized treatment of type 2 diabetes. Biochem Med (Zagreb). 2013;23(2):154–71.

    Article  CAS  Google Scholar 

  62. Manzoni C, Kia DA, Vandrovcova J, Hardy J, Wood NW, Lewis PA, et al. Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Brief Bioinformatics. 2018;19(2):286–302.

    Article  CAS  PubMed  Google Scholar 

  63. Yan S-K, Liu R-H, Jin H-Z, Liu X-R, Ye J, Shan L, et al. ‘Omics’ in pharmaceutical research: overview, applications, challenges, and future perspectives. Chin J Nat Med. 2015;13(1):3–21.

    PubMed  Google Scholar 

  64. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science (New York, NY). 2001;291(5507):1304–51.

    Article  CAS  Google Scholar 

  65. Bluett J, Barton A. Precision medicine in rheumatoid arthritis. Rheum Dis Clin. 2017;43(3):377–87.

    Article  Google Scholar 

  66. Au TH, Wang K, Stenehjem D, Garrido-Laguna I. Personalized and precision medicine: integrating genomics into treatment decisions in gastrointestinal malignancies. J Gastrointest Oncol. 2017;8(3):387.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hunter DJ, Reddy KS. Noncommunicable diseases. N Engl J Med. 2013;369(14):1336–43.

    Article  CAS  PubMed  Google Scholar 

  68. Topol EJ. A decade of digital medicine innovation. Sci Transl Med. 2019;11(498):eaaw7610.

    Article  PubMed  Google Scholar 

  69. Kamel Boulos MN, Zhang P. Digital twins: from personalised medicine to precision public health. J Pers Med. 2021;11(8):745.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Björnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, Gustafsson M, et al. Digital twins to personalize medicine. Genome Med. 2020;12(1):1–4.

    Article  Google Scholar 

  71. Grieves M. Digital twin: manufacturing excellence through virtual factory replication. White Paper. 2014;1:1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larijani, B., Aghaei Meybodi, H.R., Sarhangi, N., Hasanzad, M. (2022). Principles of Precision Medicine. In: Hasanzad, M. (eds) Precision Medicine in Clinical Practice. Springer, Singapore. https://doi.org/10.1007/978-981-19-5082-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5082-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5081-0

  • Online ISBN: 978-981-19-5082-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics