Skip to main content

The Role of Sustained Ocean Observations to the Society and Blue Economy

  • Chapter
  • First Online:
Blue Economy

Abstract

The ocean’s contributions to humanity exceeds the products available from it, by absorbing more than 90% of the heat resulting from anthropogenic greenhouse gas emissions. The ocean plays a major role in the global cycles of oxygen, carbon dioxide, nitrous oxide and other gases and rebalances the heat differential between poles and the equator, governing the climate to maintain life on our planet. The need to sustainably observe all areas of the ocean—as well as its unlimited potential for renewable ocean energy—are providing inspiration for new technological innovations. However, it is becoming more evident from recent scientific findings that ocean health is more at risk than previously thought, because different pressures add up and contribute to rapid and unpredictable changes in ocean ecosystems. With renewed, revitalized, and changing global scenarios and the United Nations declaring this decade as the UN Decade of Ocean Sciences for Sustainable Development, countries are moving up the ocean in their national policy agendas. Coastal countries, especially small island developing states, are advocating for socially equitable and environmentally sustainable growth. This will require systematic in-situ ocean data collection to understand today’s ocean and for forecasts, disaster risk reduction and early warning systems for coastal society and infrastructure and for the assessment and management of ocean resources. This chapter discusses in detail the need for and importance of ocean observations linked to the blue economy, using case studies to understand how under-resourced countries are facing the complex challenges of ocean observing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See https://www.goosocean.org/index.php?option=com_content&view=article&layout=edit&id=283&Itemid=441, accessed 11 March 2022.

  2. 2.

    https://www.itu.int/dms_pub/itu-t/oth/4B/04/T4B040000160001PDFE.pdf.

  3. 3.

    https://pogo-ocean.org/innovation-in-ocean-observing/activities/openmods-open-access-marine-observation-devices/.

  4. 4.

    https://www.environment.gov.za/white_paper_national_environmental_management_ocean_no37692.

  5. 5.

    Geoportal: https://geoportal.gmes.ug.edu.gh/. Youtube Channel: UG-GMES_Regional Marine Centre.

  6. 6.

    WMO Factsheet Early warning system saves millions of lives https://library.wmo.int/doc_num.php?explnum_id=7560.

  7. 7.

    A detailed discussion on the definition of ecosystem services within a marine context can be found in Millenium Ecosystem Assessment, 2005: https://www.millenniumassessment.org/en/index.html.

  8. 8.

    https://www.goosocean.org/index.php?option=com_oe&task=viewGroupRecord&groupID=231.

  9. 9.

    https://www.oceanbestpractices.org/.

  10. 10.

    https://www.frontiersin.org/research-topics/8224/oceanobs19-an-ocean-of-opportunity.

References

  • Beal LM, Vialard J, Roxy MK et al (2020) A road map to IndOOS-2: better observations of the rapidly warming Indian Ocean. Bull Am Meteorol Soc 101(11):E1891–E1913

    Article  Google Scholar 

  • Bittig HC, Maurer TL, Plant JN et al (2019) A BGC-Argo Guide: planning, deployment, data handling and usage. Front Mar Sci 6:502. https://doi.org/10.3389/fmars.2019.00502

    Article  Google Scholar 

  • Bojinski S, Verstraete M, Peterson TC et al (2014) The concept of essential climate variables in support of climate research, applications, and policy. Bull Am Meteorol Soc 95(9):1431–1443. https://doi.org/10.1175/BAMS-D-13-00047.1

    Article  Google Scholar 

  • Bork K, Karstensen J, Visbeck M et al (2008) The legal regulation of floats and gliders—In quest of a new regime? Ocean Dev Int Law 39(3):298–328. https://doi.org/10.1080/00908320802235338

    Article  Google Scholar 

  • Carrasco De La Cruz PM (2021) The knowledge status of coastal and marine ecosystem services—Challenges, limitations and lessons learned from the application of the ecosystem services approach in management. Front Mar Sci 8:684770. https://doi.org/10.3389/fmars.2021.684770

    Article  Google Scholar 

  • Chaudhuri D, Sengupta D, D’Asaro E et al (2019) Response of the salinity-stratified Bay of Bengal to Cyclone Phailin. J Phys Oceanogr 49(5):1121–1140

    Article  Google Scholar 

  • de Ruijter WPM, Ridderinkhof H, Lutjeharms JRE et al (2002) Observations of the flow in the Mozambique Channel. Geophys Res Lett 29(10):1502–1504

    Article  Google Scholar 

  • Francis PA, Jithin AK, Effy JB et al (2020) High resolution operational ocean forecast and reanalysis system for the Indian Ocean. Bull Am Meteorol Soc 101(8):E1340–E1356. https://doi.org/10.1175/BAMS-D-19-0083.1

    Article  Google Scholar 

  • GOOS Biogeochemistry Panel (2013) First technical experts workshop of the GOOS Biogeochemistry Panel: defining Essential Ocean Variables for biogeochemistry http://www.ioccp.org/images/10FOO/Technical%20Experts%20Meeting%20Report_Draft_20140212.pdf

  • Halo I, Backeberg B, Penven P et al (2014) Eddy properties in the Mozambique Channel: a comparison between observations and two numerical ocean circulation models. Deep-Sea Res, Part II 100:38–53

    Article  Google Scholar 

  • Han W, Vialard J, McPhaden MJ et al (2014) Indian Ocean decadal variability: a review. Bull Amer Meteor Soc 95:1679–1703

    Article  Google Scholar 

  • Howe BM, Arbic BK, Aucan J et al (2019) SMART cables for observing the global ocean: science and implementation. Front Mar Sci 6:424. https://doi.org/10.3389/fmars.2019.00424

    Article  Google Scholar 

  • Intergovernmental Oceanographic Commission (IOC) (2019) The Global Ocean Observing System 2030 Strategy. IOC, Paris, IOC Brochure 2019–5 (IOC/BRO/2019/5 rev.2), GOOS Report No. 239. https://goosocean.org/index.php?option=com_oe&task=viewDocumentRecord&docID=24590

  • IOC/ABELOS (2005) The Advisory Body of Experts on the Law of the Sea (IOC/ABELOS), fifth session, Buenos Aires, Argentina, 11–15 April 2005. IOC. Reports of meetings of experts and equivalent bodies, 203, p 40, UNESCO

    Google Scholar 

  • Izumo T, Vialard J, Lengaigne M et al (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3(3):168–172. https://doi.org/10.1038/Ngeo760

    Article  Google Scholar 

  • Jaquemet S, le Corre M, Marsac et al (2005) Foraging habitats of the seabird community of Europa island (Mozambique Channel). Mar Biol 147:573–582

    Google Scholar 

  • Jolly C, Jolliffe J, Postlethwaite C et al (2021) Value chains in public marine data: a UK case study, 2021/11. A joint OECD Working Paper in collaboration with the UK Marine Environmental Data and Information Network (MEDIN) and the Global Ocean Observing System (GOOS) in the Intergovernmental Oceanographic Commission of UNESCO. https://doi.org/10.1787/d8bbdcfa-en

  • Kite-Powell HL, Colgan CS, Weiher R (2003) Economics of an integrated ocean observing system. Mar Technol Soc J 37(3):55–66. https://doi.org/10.4031/002533203787537276

    Article  Google Scholar 

  • Lellouche J-M, Eric G, Romain B-B et al (2021) The Copernicus global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front Earth Sci 9:698876. https://doi.org/10.3389/feart.2021.698876

    Article  Google Scholar 

  • Le Traon PY, Reppucci A, Fanjul EA et al (2019) From observation to information and users: the Copernicus Marine Service perspective. Front Mar Sci 6:234. https://doi.org/10.3389/fmars.2019.00234

    Article  Google Scholar 

  • Lindstrom E, Gunn J, Fischer A et al (2012) A framework for ocean observing: by the task team for an integrated framework for sustained ocean observing. UNESCO, Paris. https://doi.org/10.5270/OceanObs09-FOO

  • Luo JJ, Zhang RC, Behera SK et al (2010) Interaction between El Niño and extreme Indian Ocean Dipole. J Clim 23(3):726–742. https://doi.org/10.1175/2009jcli3104.1

    Article  Google Scholar 

  • Mackenzie B, Celliers L, Assad LPdF et al (2019) The role of stakeholders in creating societal value from coastal and ocean observations. Front Mar Sci 6:137. https://doi.org/10.3389/fmars.2019.0013

    Article  Google Scholar 

  • Malauene BS, Shillington FA, Roberts MJ et al (2014) Cool, elevated chlorophyll-a waters off northern Mozambique. Deep-Sea Res, Part II 100:68–78

    Article  Google Scholar 

  • Malauene BS, Moloney CL, Roberts MJ et al (2018) Impact of offshore eddies on shelf circulation and river plumes of the Sofala Bank, Mozambique Channel. J Mar Syst 185:1–12

    Article  Google Scholar 

  • Marcelli M, Piermattei V, Gerin R et al (2021) Toward the widespread application of low-cost technologies in coastal ocean observing (Internet of Things for the Ocean). Mediterr Mar Sci 22(2):255–269. https://doi.org/10.12681/mms.25060

  • Mathew S, Natesan U, Latha G et al (2018) Dynamics behind warming of the southeastern Arabian Sea and its interruption based on in situ measurements. Ocean Dyn 68:457–467. https://doi.org/10.1007/s10236-018-1130-3

    Article  Google Scholar 

  • McPhaden PM, Meyers G, Ando K et al (2009) RAMA—Research moored array for African-Asian-Australian monsoon analysis and prediction. Bull Am Meteorol Soc 90:459–480. https://doi.org/10.1175/2008BAMS2608.1

    Article  Google Scholar 

  • Miloslavich P, Bax NJ, Simmons SE et al (2018) Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob Change Biol 24(6):2416–2433. https://doi.org/10.1111/gcb.14108

    Article  Google Scholar 

  • Mohanty UC, Osuri KK, Tallapragada V et al (2015) A great escape from the Bay of Bengal “Super Sapphire–Phailin” Tropical Cyclone: a case of improved weather forecast and societal response for disaster mitigation. Earth Interact 19(17):1–11

    Article  Google Scholar 

  • Nammalwar P, Satheesh S, Ramesh R (2013) Applications of remote sensing in the validations of Potential Fishing Zones (PFZ) along the coast of North Tamil Nadu, India. Indian J Geo-Mar Sci 42(3):283–292

    Google Scholar 

  • Navaneeth KN, Martin MV, Jossia Joseph K et al (2019) Contrasting the upper ocean response to two intense cyclones in the Bay of Bengal. Deep-Sea Res, Part I 147:65–78

    Google Scholar 

  • Rayner R, Jolly C, Gouldman C (2019) Ocean observing and the blue economy. Front Mar Sci 6:330. https://doi.org/10.3389/fmars.2019.00330

    Article  Google Scholar 

  • Ridderinkhof H, de Ruijter WPM (2003) Moored current observations in the Mozambique Channel. Deep-Sea Res, Part II 50:1933–1955

    Article  Google Scholar 

  • Roberts MJ, Ternon JF, Morris T (2014) Interaction of dipole eddies with the western continental slope of the Mozambique Channel. Deep-Sea Res, Part II 100:54–67

    Article  Google Scholar 

  • Roxy MK, Modi A, Murtugudde R et al (2016) A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys Res Lett 43:826–833. https://doi.org/10.1002/2015GL066979

    Article  Google Scholar 

  • Saji N, Goswami B, Vinayachandran P et al (1999) (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363. https://doi.org/10.1038/43854

    Article  Google Scholar 

  • Sætre R, da Silva AJ (1984) The circulation of the Mozambique Channel. Deep-Sea Res, Part I 31:485–508

    Article  Google Scholar 

  • Schouten MW, de Ruijter WPM, van Leeuwen PJ et al (2003) Eddies and variability in the Mozambique Channel. Deep-Sea Res, Part II 50:1987–2003

    Article  Google Scholar 

  • SCOR Working Group 154 (2020) Recommendations for plankton measurements on the GO-SHIP program with relevance to other sea-going expeditions. SCOR Working Group 154 GO-SHIP Report. Scientific Committee on Oceanic Research, p 70. https://doi.org/10.25607/OBP-718

  • Stefanoudis PV, Licuanan WY, Morrison TH et al (2021) Turning the tide of parachute science. Curr Biol 31:R161–R185. https://doi.org/10.1016/j.cub.2021.01.029

    Article  Google Scholar 

  • Tanhua T, McCurdy A, Fischer A et al (2019) What we have learned from the framework for ocean observing: evolution of the global ocean observing system. Front Mar Sci 6:471. https://doi.org/10.3389/fmars.2019.00471

    Article  Google Scholar 

  • Ternon JF, Roberts MJ, Morris T et al (2014) In situ measured current structures of the eddy field in the Mozambique Channel. Deep-Sea Res, Part II 100:10–26

    Article  Google Scholar 

  • Tew-Kai E, Marsac F (2009) Patterns of variability of sea surface chlorophyll in Mozambique Channel: a quantitative approach. J Mar Syst 77:77–88

    Article  Google Scholar 

  • Trenberth KE, Karl TR and Spence TW (2002) The need for a systems approach to climate observations. Bull Am Meteorol Soc 83(11):1593–1602. https://doi.org/I0.II75/BAMS-83-11-1593

  • Ullgren J, Aken H, Ridderinkhof H et al (2012) The hydrography of the Mozambique Channel from six years of continuous temperature, salinity and velocity observation. Deep-Sea Res, Part I 69:36–50

    Article  Google Scholar 

  • Ullgren JE, Andre E, Gammelsrød T et al (2016) Observations of strong ocean current events offshore Pemba, northern Mozambique. J Oper Oceanogr 9:55–66

    Article  Google Scholar 

  • Venkatesan R, Vedachalam N, Vengatesan G et al (2020) Fuel for cyclones: quantification of ocean-atmosphere energy exchange during tropical cyclones in the Bay of Bengal using Indian Ocean Moored Observatories. Mar Technol Soc J 54(4):81–92. https://doi.org/10.4031/MTSJ.54.4.4

    Article  Google Scholar 

  • Webster P, Moore A, Loschnigg J et al (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360. https://doi.org/10.1038/43848

    Article  Google Scholar 

  • Weimerskirch H, Le Corre M, Jaquemet S et al (2004) Foraging strategy of a top predator in tropical water: great frigatebirds in the Mozambique Channel. Mar Ecol Prog Ser 275:297–308

    Article  Google Scholar 

  • Wilkinson M, Dumontier M, Aalbersberg I et al (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juliet Hermes or Tamaryn Morris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Centre for Science and Technology of the Non-aligned and Other Developing Countries (NAM S&T Centre)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hermes, J. et al. (2022). The Role of Sustained Ocean Observations to the Society and Blue Economy. In: Urban Jr., E.R., Ittekkot, V. (eds) Blue Economy. Springer, Singapore. https://doi.org/10.1007/978-981-19-5065-0_14

Download citation

Publish with us

Policies and ethics