Skip to main content

Abstract

This chapter is focused on the fundamentals of Flash memory and NAND in particular. The explosion of data with the rise of the Internet and mobile computing in the past 30 years has made NAND Flash the most successful nonvolatile memory technology in the world. Compared to other alternatives, the low-cost-per-bit, high Read/Write speed, lightweight and compact form factor, and higher reliability over conventional hard disk drive (HDD) make NAND Flash the storage medium of choice for numerous applications. In the first section of this chapter, the basic floating gate memory cell structure is introduced to illustrate the fundamental physical characteristics that make NAND amenable for device scaling and well suited for data storage applications. Then, the historical evolution of NAND Flash is reviewed. In the second section, NAND fundamentals, including basic operations, memory architecture, and manufacturing processes, etc., will be discussed in detail. Starting around 2014, the NAND industry went through a major architecture transition from 2D to 3D NAND. The third section is devoted to the unique technology and design challenges of 3D NAND. It is followed by a discussion of various reliability issues, before the final conclusion on the 3D NAND future outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is true for the ABL (All-BL) architecture, which is adopted by virtually all 3D NAND technologies. In 2D NAND, there is an alternative SBL (Shielded-BL) architecture, where the cells on a particular WL are organized into 2 pages. The cells on the Even BLs belong to 1 page, while the cells on the Odd BLs belong to another page.

References

  1. F. Masuoka et al, “A New Flash E2PROM Cell Using Triple Polysilicon Technology,” IEDM Tech. Dig., Dec. 1984, pp. 464–467.

    Google Scholar 

  2. F. Masuoka et al, “New Ultra High Density EPROM and Flash EEPROM with NAND Structure Cell,” IEDM Tech. Dig., Dec. 1987, pp. 552–555.

    Google Scholar 

  3. S. Aritome, “NAND Flash Memory Technologies,” IEEE Press, 2016.

    Google Scholar 

  4. Monzio Compagnoni et al, “Reliability of NAND Flash Arrays: A Review of What the 2-D to 3-D Transition Meant,” IEEE Trans. Electron Devices, Vol. 66, No. 11, pp. 4504-4516, Nov. 2019.

    Google Scholar 

  5. Y. Tseng et al, “A 34MB/s-program-throughput 16Gb MLC NAND with All-bitline Architecture in 56nm,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 420–421.

    Google Scholar 

  6. Y. Li et al, “A 16Gb 3b/cell NAND Flash Memory in 56nm with 8MB/s Write Rate,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 506–507.

    Google Scholar 

  7. R. Zeng et al, “A 172mm2 32Gb MLC NAND Flash Memory in 34nm CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009, pp. 236–237.

    Google Scholar 

  8. C. Trinh et al, “A 5.6MB/s 64Gb 4b/cell NAND Flash Memory in 43nm CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009, pp. 246–247.

    Google Scholar 

  9. T. Futatsuyama et al, “A 113mm2 32Gb 3b/cell NAND Flash Memory,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2009, pp. 242–243.

    Google Scholar 

  10. C. Lee et al, “A 32Gb MLC NAND-flash Memory with Vth-endurance-enhancing Schemes in 32nm CMOS,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb, 2010, pp. 446–447.

    Google Scholar 

  11. G. Marotta et al, “A 3bit/cell 32Gb NAND Flash Memory at 34nm with 6MB/s Program Throughput and with Dynamic 2b/cell Bocks Configuration Mode for A Program Throughput Increase up to 13MB/s,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010, pp. 444–445.

    Google Scholar 

  12. H. Kim et al, “A 159mm2 32Gb MLC NAND-flash Memory with 200MB/s Asynchronous DDR Interface,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2010, pp. 442–443.

    Google Scholar 

  13. K-T. Park et al, “A 7MB/s 64Gb 3-bit/cell DDR NAND Flash Memory in 20nm-node Technology,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2011, pp. 212–213.

    Google Scholar 

  14. K. Fukuda et al, “A 151mm2 64Gb MLC NAND Flash Memory in 24nm CMOS Technology,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2011, pp. 198–199.

    Google Scholar 

  15. Lee et al, “A 64Gb 533Mb/s DDR Interface MLC NAND Flash in Sub-20nm Technology,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2012, pp. 430–431.

    Google Scholar 

  16. Naso et al, “A 128Gb 3b/cell NAND Flash Design Using 20nm Planar-cell Technology,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 218–219.

    Google Scholar 

  17. K-T. Park et al, “Three-dimensional 128Gb MLC Vertical NAND Flash-memory with 24-WL Stacked Layers and 50MB/s High-speed Programming,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 334–335.

    Google Scholar 

  18. M. Helm et al, “A 128Gb MLC NAND-flash Device Using 16nm Planar Cell,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 326–327.

    Google Scholar 

  19. S. Choi et al, “A 93.4mm2 64Gb MLC NAND-flash Memory with 16nm CMOS Technology,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2014, pp. 328–329.

    Google Scholar 

  20. M. Sako et al, “A Low-Power 64Gb MLC NAND-flash Memory in 15nm CMOS Technology,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015, pp. 128–129.

    Google Scholar 

  21. J-W. Im et al, “A 128Gb 3b/cell V-NAND Flash Memory with 1Gb/s I/O Rate,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2015, pp. 130–131.

    Google Scholar 

  22. T. Tanaka et al, “A 768Gb 3b/cell 3D-floating-gate NAND Flash Memory,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Jan./Feb. 2016, pp. 142–143.

    Google Scholar 

  23. D. Kang et al, “246Gb 3b/cell V-NAND Flash Memory with 48 Stacked WL Layers,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Jan./Feb. 2016, pp. 130–131.

    Google Scholar 

  24. R. Yamashita et al, “A 512Gb 3b/cell Flash Memory on 64-word-line-layer BiCS Technology,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 196–197.

    Google Scholar 

  25. C. Kim et al, “A 512Gb 3b/cell 64-stached WL 3D V=NAND Flash Memory,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 202–203.

    Google Scholar 

  26. S. Lee et al, “A 1Tb 4b/cell 64-stacked-WL 3D NAND Flash Memory with 12MB/s Program Throughput,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 340–341.

    Google Scholar 

  27. Maejima et al, “A 512Gb 3b/cell 3D Flash Memory on a 96-word-line-layer Technology,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 336–337.

    Google Scholar 

  28. N. Shibata et al, “A 1.33Tb 4-bit/cell 3D-flash Memory on a 96-word-line-layer Technology,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 210–211.

    Google Scholar 

  29. C. Siau et al, “A 512Gb 3-bit/cell 3D Flash Memory on 128-wordline-layer with 132MB/s Write Prformance Featuing Circuit-under-array Technology,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2019, pp. 218–219.

    Google Scholar 

  30. Goda, “3-D NAND Technology Achievements and Future Scaling Perspectives,” IEEE Trans. Electron Devices, vol. 67, No. 4, pp. 1373–1381, April 2020.

    Google Scholar 

  31. K. Parat et al, “A Floating Gate Based 3D NAND Technology with CMOS Under Array,” IEDM Tech. Dig., Dec. 2015, pp. 48–51.

    Google Scholar 

  32. J. Jang et al, “Vertical Cell Array using TCAT (Terabit Cell Array Transistor) Technology for Ultra High Density NAND Flash Memory”, VLSI Symp. Tech. Dig., Jun. 2009, pp. 192–193.

    Google Scholar 

  33. Tanaka et al, “Bit Cost Scalable Technology with Punch and Plug Process for Ultra High Density Flash Memory,” VLSI Symp. Tech. Dig., Jun. 2007, pp. 14–15.

    Google Scholar 

  34. K. Parat et al, “Scaling Trend in NAND Flash,” IEDM Tech. Dig., Dec. 2018, pp. 27–30.

    Google Scholar 

  35. Micron Technology Press Release, https://investors.micron.com/news-releases/news-release-details/micron-ships-worlds-first-176-layer-nand-delivering-breakthrough, Nov. 2020.

  36. J- W. Park et al, “A 176-Stacked 512Gb 3b/Cell 3D-NAND Flash with 10.8Gb/mm2 Density with a Peripheral Circuit Under Cell Array Architecture,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2021, pp. 422–423.

    Google Scholar 

  37. Nitayama et al, “Bit Cost Scalable (BiCS) Technology for Future Ultra High Density Memories,” VLSI Symp. Tech. Dig., Jun. 2013.

    Google Scholar 

  38. Monzio Compagnoni et al, “Analytical Model for the Electron-injection Statistics during Programming of Nanoscale NAND Flash Memories,” IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 3192-3199, Nov. 2008.

    Google Scholar 

  39. N. Mielke et al, “Flash EEPROM Threshold Instabilities due to Charge Trapping during Program/Erase Cycling,” IEEE Tran. Device and Materials Reliability, vol. 4, no. 3, pp. 335-344, 2004.

    Article  Google Scholar 

  40. Tesla recall information, https://www.tesla.com/support/8gb-emmc-recall-frequently-asked-questions, Dec. 2021.

  41. M. Jung, et al, “Driving into the Memory Wall,” MEMSYS, Oct. 2018.

    Google Scholar 

  42. Park et al, “A 176-Stacked 512Gb 3b/Cell 3D-NAND Flash with 10.8Gb/mm2 Density with a Peripheral Circuit Under Cell Array Architecture,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2021, pp. 422–423.

    Google Scholar 

  43. Khakifirooz et al, “A 1Tb 4b/Cell 144-Tier Floating-Gate 3D-NAND Flash Memory with 40MB/s Program Throughput and 13.8Gb/mm2 Bit Density,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2021, pp. 424–426.

    Google Scholar 

  44. Cho et al, “A 512Gb 3/Cell 7th-Generation 3D-NAND Flash Memory with 184MB/s Write Throughput and 2.0Gb/s Interface,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2021, pp. 426–428.

    Google Scholar 

  45. Yuh et al, “A 1-Tb 4b/Cell 4-Plane 162-Layer 3D Flash Memory With a 2.4-Gb/s I/O Speed Interface,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2022, pp. 130–132.

    Google Scholar 

  46. W. Cho et al, “A 1-Tb, 4b/Cell, 176-Stacked-WL 3D-NAND Flash Memory with Improved Read Latency and a 14.8Gb/mm2 Density,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2022, pp. 134–135.

    Google Scholar 

  47. Kim et al, “A 1Tb 3b/Cell 8th-Generaion 3D-NAND Flash Memory with 164MB/s Write Throughput and a 2.4G/s Interface,” IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2022, pp. 136–137.

    Google Scholar 

Download references

Acknowledgements

The author sincerely thanks Dr. Zhen Wei and Dr. Xi Qian for their detailed review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengtao Tony Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Z.T. (2022). Flash Memory and NAND. In: Li, Y., Shi, H. (eds) Advanced Driver Assistance Systems and Autonomous Vehicles. Springer, Singapore. https://doi.org/10.1007/978-981-19-5053-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5053-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5052-0

  • Online ISBN: 978-981-19-5053-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics